Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor

Abstract

Generating, manipulating and detecting electron spin polarization and coherence at room temperature is at the heart of future spintronics and spin-based quantum information technology1,2,3,4. Spin filtering, which is a key issue for spintronic applications, has been demonstrated by using ferromagnetic metals5,6,7,8, diluted magnetic semiconductors9,10, quantum point contacts11, quantum dots12, carbon nanotubes13, multiferroics14 and so on. This filtering effect was so far restricted to a limited efficiency and primarily at low temperatures or under a magnetic field. Here, we provide direct and unambiguous experimental proof that an electron-spin-polarized defect, such as a Gai self-interstitial in dilute nitride GaNAs, can effectively deplete conduction electrons with an opposite spin orientation and can thus turn the non-magnetic semiconductor into an efficient spin filter operating at room temperature and zero magnetic field. This work shows the potential of such defect-engineered, switchable spin filters as an attractive alternative to generate, amplify and detect electron spin polarization at room temperature without a magnetic material or external magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of defect-engineered spin filtering and the experimental approach at room temperature and B=0.
Figure 2: Photoluminescence intensity and polarization (corresponding to the conduction electron spin polarization Pe) with or without the spin-filtering effect.
Figure 3: Dependence of conduction electron spin polarization on the optical excitation power and the concentration of the spin-filtering defects.
Figure 4: Identification of the spin-filtering defects by ODMR.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  3. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  4. Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  5. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  CAS  Google Scholar 

  6. Hammar, P. R. & Johnson, M. Detection of spin-polarized electrons injected into a two-dimensional electron gas. Phys. Rev. Lett. 88, 066806 (2002).

    Article  CAS  Google Scholar 

  7. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  CAS  Google Scholar 

  8. Jonker, B. T. et al. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    Article  CAS  Google Scholar 

  9. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  Google Scholar 

  10. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  11. Potok, R. M. et al. Detecting spin-polarized currents in ballistic nanostructures. Phys. Rev. Lett. 89, 266602 (2002).

    Article  CAS  Google Scholar 

  12. Folk, J. A. et al. A gate-controlled bidirectional spin filter using quantum coherence. Science 299, 679–682 (2003).

    Article  CAS  Google Scholar 

  13. Hauptmann, J. R. et al. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts. Nature Phys. 4, 373–376 (2008).

    Article  CAS  Google Scholar 

  14. Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007).

    Article  CAS  Google Scholar 

  15. Meier, F. & Zakharchenya, B. P. Optical Orientation (North-Holland, 1984).

    Google Scholar 

  16. Weisbuch, C. & Lampel, G. Spin-dependent recombination and optical spin orientation in semiconductors. Solid. State. Commun. 14, 141 (1974).

    Article  CAS  Google Scholar 

  17. Miller, R. C., Tsang, W. T. & Nordland, W. A. Spin-dependent recombination in GaAs. Phys. Rev. B 21, 1569–1575 (1980).

    Article  CAS  Google Scholar 

  18. Paget, D. Optical-pumping study of spin-dependent recombination in GaAs. Phys. Rev. B 30, 931–946 (1984).

    Article  CAS  Google Scholar 

  19. Kalevich, V. K. et al. Spin-dependent recombination in GaAsN solid solutions. JETP Lett. 82, 455–458 (2005).

    Article  CAS  Google Scholar 

  20. Lombez, L. et al. Spin dynamics in dilute nitride semiconductors at room temperature. Appl. Phys. Lett. 87, 252115 (2005).

    Article  Google Scholar 

  21. Lagarde, D. et al. Electron spin dynamics in GaAsN and InGaAsN structures. Phys. Status Solidi A 204, 208–220 (2007).

    Article  CAS  Google Scholar 

  22. Buyanova, I. A. & Chen, W. M. Physics and Applications of Dilute Nitrides (Taylor & Francis Books, 2004).

    Book  Google Scholar 

  23. Chen, W. M. Applications of optically detected magnetic resonance in semiconductor layered structures. Thin Solid Films 364, 45–52 (2000).

    Article  CAS  Google Scholar 

  24. Baraff, G. A. & Schluter, M. Electronic structure, total energies, and abundances of the elementary point defects in GaAs. Phys. Rev. Lett. 55, 1327–1330 (1985).

    Article  CAS  Google Scholar 

  25. Thinh, N. Q. et al. Properties of Ga-interstitial defects in AlGaNP. Phys. Rev. B 71, 125209 (2005).

    Article  Google Scholar 

  26. Watkins, G. D. & Corbett, J. W. Defects in irradiated silicon. I. Electron spin resonance of the Si–A center. Phys. Rev. 121, 1001–1014 (1961).

    Article  CAS  Google Scholar 

  27. Koh, A. K. & Miller, D. J. Hyperfine coupling constants and atomic parameters for electron paramagnetic resonance data. Atom. Data Nucl. Data Tables 33, 235–253 (1985).

    Article  CAS  Google Scholar 

  28. Ohno, Y. et al. Spin relaxation in GaAs(110) quantum wells. Phys. Rev. Lett. 83, 4196–4199 (1999).

    Article  CAS  Google Scholar 

  29. D’yakonov, M. I. & Kachorovskii, V. Yu. Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110–112 (1986).

    Google Scholar 

Download references

Acknowledgements

W.M.C. and I.A.B. gratefully acknowledge the support from Linköping University through the Professor Contracts, the Swedish Research council (VR), the Swedish Energy Agency, the Knut and Alice Wallenberg Foundation, the Wenner-Gren Foundations and the Swedish Foundation for International Cooperation in Research and Higher Education (STINT). The work at UCSD is partially supported by NSF Grant No. DMR- 0606389.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Buyanova or W. M. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Buyanova, I., Zhao, F. et al. Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor. Nature Mater 8, 198–202 (2009). https://doi.org/10.1038/nmat2385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing