Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

From Mott state to superconductivity in 1T-TaS2

Abstract

The search for the coexistence between superconductivity and other collective electronic states in many instances promoted the discovery of novel states of matter. The manner in which the different types of electronic order combine remains an ongoing puzzle. 1T-TaS2 is a layered material, and the only transition-metal dichalcogenide (TMD) known to develop the Mott phase. Here, we show the appearance of a series of low-temperature electronic states in 1T-TaS2 with pressure: the Mott phase melts into a textured charge-density wave (CDW); superconductivity develops within the CDW state, and survives to very high pressures, insensitive to subsequent disappearance of the CDW state and, surprisingly, also the strong changes in the normal state. This is also the first reported case of superconductivity in a pristine 1T-TMD compound. We demonstrate that superconductivity first develops within the state marked by a commensurability-driven, Coulombically frustrated, electronic phase separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ambient-pressure phases of 1T-TaS2.
Figure 2: Resistivity in the pressure range of 0–25 GPa and temperature range of 1.3–300 K.
Figure 3: The temperature–pressure phase diagram of 1T-TaS2.
Figure 4: The results for the Coulomb energy calculation for two different domain stackings as a function of domain size.
Figure 5: Resistivity taken at a temperature of 6 K as a function of pressure.

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Zeitschrift für Physik B 64, 189–193 (1986).

    Article  CAS  Google Scholar 

  2. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–76 (2006).

    Article  CAS  Google Scholar 

  3. Carlson, E., Emery, V., Kiveslon, S. & Ograd, D. The Physics of Conventional and Unconventional Superconductors (Springer, 2003).

    Google Scholar 

  4. Gabovich, A. M., Voitenko, A. I., Annett, J. F. & Ausloos, M. Charge- and spin-density wave superconductors. Supercond. Sci. Tech. 14, R1–R27 (2001).

    Article  CAS  Google Scholar 

  5. Grosche, F. M. et al. Superconductivity on the threshold of magnetism in CePd2Si2 and CeIn3 . J. Phys. Condens. Matter 13, 2845–2860 (2001).

    Article  CAS  Google Scholar 

  6. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

    Article  CAS  Google Scholar 

  7. Morosan, E. et al. Superconductivity in CuxTiSe2 . Nature Phys. 2, 544–550 (2006).

    Article  CAS  Google Scholar 

  8. Friend, R. H. & Yoffe, A. D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

    Article  CAS  Google Scholar 

  9. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge density waves and superlattices in metallic layered transition-metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  CAS  Google Scholar 

  10. Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2 . Phys. Rev. B 49, 16899–16916 (1994).

    Article  CAS  Google Scholar 

  11. Fazekas, P. & Tosatti, E. Charge carrier localization in pure and doped 1T-TaS2 . Physica B & C 99, 183–187 (1980).

    Article  CAS  Google Scholar 

  12. Fazekas, P. & Tosatti, E. Electrical, structural and magnetic-properties of pure and doped 1T-TaS2 . Phil. Mag. B 39, 229–244 (1979).

    Article  CAS  Google Scholar 

  13. Perfetti, L., Gloor, T. A., Mila, F., Berger, H. & Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 71, 153101 (2005).

    Article  Google Scholar 

  14. Bourbonnais, C. & Jrome, D. Advances in Synthetic Metals (Elsevier, 1999).

    Google Scholar 

  15. Ramirez, A. C60 and its superconductivity. Supercond. Rev. 1, 1–101 (1994).

    CAS  Google Scholar 

  16. Zhou, O. et al. Structural and electronic properties of (NH3)×K3C60. Phys. Rev. B 52, 483–489 (1995).

    Article  CAS  Google Scholar 

  17. Ishiguro, T., Yamaji, K. & Saito, G. Organic Superconductors (Springer, 1998).

    Book  Google Scholar 

  18. Nam, M.-S., Ardavan, A., Blundell, S. J. & Schlueter, J. A. Fluctuating superconductivity in organic molecular metals close to the Mott transition. Nature 449, 584–587 (2007).

    Article  CAS  Google Scholar 

  19. Rossnagel, K. & Smith, N. V. Spin–orbit coupling in the band structure of reconstructed 1T-TaS2 . Phys. Rev. B 73, 073106 (2006).

    Article  Google Scholar 

  20. Zwick, F. et al. Spectral consequences of broken phase coherence in 1T-TaS2 . Phys. Rev. Lett. 81, 1058–1061 (1998).

    Article  CAS  Google Scholar 

  21. Pillo, T. et al. Interplay between electron–electron interaction and electron–phonon coupling near the Fermi surface of 1T-TaS2 . Phys. Rev. B 62, 4277–4287 (2000).

    Article  CAS  Google Scholar 

  22. Wilson, J. A. Questions concerning the form taken by the charge density wave and the accompanying periodic-structural distortions in 2H-TaSe2, and closely related materials. Phys. Rev. B 17, 3880–3898 (1978).

    Article  CAS  Google Scholar 

  23. Bovet, M. et al. Interplane coupling in the quasi-two-dimensional 1T-TaS2 . Phys. Rev. B 67, 125105 (2003).

    Article  Google Scholar 

  24. Di Salvo, F. J., Wilson, J. A., Bagley, B. G. & Waszczak, J. V. Effects of doping on charge density waves in layer compounds. Phys. Rev. B 12, 2220–2235 (1975).

    Article  Google Scholar 

  25. Mutka, H., Zuppiroli, L., Molinié, P. & Bourgoin, J. C. Charge-density waves and localization in electron-irradiated 1T-TaS2 . Phys. Rev. B 23, 5030–5037 (1981).

    Article  CAS  Google Scholar 

  26. Tani, T., Osada, T. & Tanaka, S. The pressure effect on the CDW-transition temperatures in 1T-TaS2 . Solid State Commun. 22, 269–272 (1977).

    Article  CAS  Google Scholar 

  27. Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).

    Article  CAS  Google Scholar 

  28. Capone, M., Capriotti, L., Becca, F. & Caprara, S. Mott metal–insulator transition in the half-filled Hubbard model on the triangular lattice. Phys. Rev. B 63, 085104 (2001).

    Article  Google Scholar 

  29. McMillan, W. L. Theory of discommensurations and the commensurate–incommensurate charge density wave phase transition. Phys. Rev. B 14, 1496–1502 (1976).

    Article  CAS  Google Scholar 

  30. Nakanishi, K. & Shiba, H. Theory of 3-dimensional orderings of charge density waves in 1T-TaS2 . J. Phys. Soc. Jpn. 53, 1103–1113 (1984).

    Article  CAS  Google Scholar 

  31. Brazovskii, S. Solitons and their arrays: From quasi 1D conductors to stripes. J. Supercond. Nov. Mag. 20, 489–493 (2007).

    Article  CAS  Google Scholar 

  32. Miranda, J. & Kabanov, V. Coulomb frustrated first order phase transition and stripes. Physica C 468, 358–361 (2008).

    Article  CAS  Google Scholar 

  33. Kiss, T. et al. Charge-order-maximized momentum-dependent superconductivity. Nature Phys. 3, 720–725 (2007).

    Article  CAS  Google Scholar 

  34. Moncton, D. E., Axe, J. D. & Di Salvo, F. J. Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron scattering. Phys. Rev. Lett. 34, 734–737 (1975).

    Article  CAS  Google Scholar 

  35. Sacks, W., Roditchev, D. & Klein, J. Voltage-dependent STM image of a charge density wave. Phys. Rev. B 57, 13118–13131 (1998).

    Article  CAS  Google Scholar 

  36. Baskaran, G. Mott insulator to high Tc superconductor via pressure: Resonating valence bond theory and prediction of new systems. Phys. Rev. Lett. 90, 197007 (2003).

    Article  CAS  Google Scholar 

  37. Merino, J. & McKenzie, R. H. Superconductivity mediated by charge fluctuations in layered molecular crystals. Phys. Rev. Lett. 87, 237002 (2001).

    Article  CAS  Google Scholar 

  38. Jérome, D. The physics of organic superconductors. Science 252, 1509–1514 (1991).

    Article  Google Scholar 

  39. Klemm, R. A. Striking similarities between the pseudogap phenomena in cuprates and in layered organic and dichalcogenide superconductors. Physica C 341–348, 839–842 (2000).

    Article  Google Scholar 

  40. McKenzie, R. H. Similarities between organic and cuprate superconductors. Science 278, 820–821 (1997).

    Article  CAS  Google Scholar 

  41. Emery, V. J. & Kivelson, S. A. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).

    Article  CAS  Google Scholar 

  42. Müller, K. A. & Benedek, G. (eds) Phase Separation in Cuprate Superconductors (World Scientific, 1993).

  43. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  CAS  Google Scholar 

  44. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  CAS  Google Scholar 

  45. Isa, T. et al. Charge density wave domain originated Altshuler–Aronov–Spivak effect in 1T-TaS2 single crystal. Phys. Status Solidi B 229, 1111 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in Lausanne was supported by the Swiss National Science Foundation (SNSF) and its NCCR ‘MaNEP’. Partial support was also provided by Croatian MZES project award No. 035-0352826-2847 and by SCOPES Project award No. IB7320-111044.

Author information

Authors and Affiliations

Authors

Contributions

A.F.K. and B.S. shared equal responsibility for all aspects of this project from sample preparation to data collection and analysis. A.A. did part of the low-pressure measurements. H.B. grew the samples. E.T. contributed to the theoretical aspects of the discussions and carried out the calculations. L.F. was the overall project leader who initiated the topic and advised on the research.

Corresponding authors

Correspondence to B. Sipos or A. F. Kusmartseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, B., Kusmartseva, A., Akrap, A. et al. From Mott state to superconductivity in 1T-TaS2. Nature Mater 7, 960–965 (2008). https://doi.org/10.1038/nmat2318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing