Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron-trapping polycrystalline materials with negative electron affinity

Abstract

The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials1 with applications as sensors, varistors2 and fuel cells, reliability issues for solar cell3 and semiconductor technologies4,5 and electromagnetic seismic phenomena in the Earth’s crust6. Surprisingly, considering their relevance for applications7 and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials8 and is unusual as the electron is confined in the empty space inside the dislocation cores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The periodic supercell (13.35 Å×8.33 Å×28.96 Å) used to model the (310)[001](36.8) tilt grain boundary in MgO.
Figure 2: Comparison of the density of states of the grain-boundary supercell with bulk MgO.
Figure 3: Qualitative differences in electron trapping at grain boundaries in positive- and negative-electron-affinity materials.

Similar content being viewed by others

References

  1. Waser, R. & Hagenbeck, R. Grain boundaries in dielectric and mixed-conducting ceramics. Acta Mater. 48, 797–825 (2000).

    Article  CAS  Google Scholar 

  2. Clarke, D. R. Varistor ceramics. J. Am. Ceram. Soc. 82, 485–502 (1999).

    Article  CAS  Google Scholar 

  3. Yan, Y., Noufi, R. & Al-Jassim, M. M. Grain-boundary physics in polycrystalline CuInSe2 revisited: Experiment and theory. Phys. Rev. Lett. 96, 205501 (2006).

    Article  Google Scholar 

  4. Seto, J. Y. W. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975).

    Article  CAS  Google Scholar 

  5. Walker, P. M., Mizuta, H., Uno, S., Furuta, Y. & Hasko, D. G. Improved off-current and subthreshold slope in aggressively scaled poly-Si TFTs with a single grain boundary in the channel. Electron Devices IEEE Trans. 51, 212–219 (2004).

    Article  CAS  Google Scholar 

  6. Takeuchi, A., Nagahamab, H. & Hashimotoa, T. Surface electrification of rocks and charge trapping centers. Phys. Chem. Earth A/B/C 29, 359–366 (2004).

    Article  Google Scholar 

  7. Vink, T. J., Balkenende, A. R., Verbeek, R. G. F. A., van Hal, H. A. M. & de Zwart, S. T. Materials with a high secondary-electron yield for use in plasma displays. Appl. Phys. Lett. 80, 2216–2218 (2002).

    Article  CAS  Google Scholar 

  8. Rohlfing, M., Wang, N.-P., Krüger, P. & Pollmann, J. Image states and excitons at insulator surfaces with negative electron affinity. Phys. Rev. Lett. 91, 256802 (2003).

    Article  Google Scholar 

  9. Kohyama, M. Computational studies of grain boundaries in covalent materials. Modelling Simul. Mater. Sci. Eng. 10, R31 (2002).

    Article  CAS  Google Scholar 

  10. Dawson, I. et al. First-principles study of a tilt grain boundary in rutile. Phys. Rev. B 54, 13727–13733 (1996).

    Article  CAS  Google Scholar 

  11. von Alfthan, S., Haynes, P. D., Kaski, K. & Sutton, A. P. Are the structures of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett. 96, 055505 (2006).

    Article  CAS  Google Scholar 

  12. Clarke, D. R. Grain boundaries in polycrystalline ceramics. Annu. Rev. Mater. Sci. 17, 57–74 (1987).

    Article  CAS  Google Scholar 

  13. Kizuka, T., Iijima, M. & Tanaka, N. Atomic process of electron-irradiation-induced grain boundary migration in a MgO tilt boundary. Phil. Mag. A 77, 413–422 (1998).

    Article  CAS  Google Scholar 

  14. Yan, Y. et al. Impurity-induced structural transformation of a MgO grain boundary. Phys. Rev. Lett. 81, 3675–3678 (1998).

    Article  CAS  Google Scholar 

  15. Duffy, D. M. Grain boundaries in ionic crystals. J. Phys. C 19, 4393–4412 (1986).

    Article  CAS  Google Scholar 

  16. Watson, G. W., Kelsey, E. T., de Leeuw, N. H., Harris, D. J. & Parker, S. C. Atomistic simulation of dislocations, surfaces and interfaces in MgO. J. Chem. Soc. Faraday Trans. 92, 433–438 (1996).

    Article  CAS  Google Scholar 

  17. Harding, J. H., Harris, D. J. & Parker, S. C. Computer simulation of general grain boundaries in rocksalt oxides. Phys. Rev. B 60, 2740–2746 (1999).

    Article  CAS  Google Scholar 

  18. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  19. McKenna, K. P., Sushko, P. V. & Shluger, A. L. Inside powders: A theoretical model of interfaces between MgO nanocrystallites. J. Am. Chem. Soc. 129, 8600–8608 (2007).

    Article  CAS  Google Scholar 

  20. Benia, H.-M., Myrach, P. & Nilius, N. Photon emission spectroscopy of thin MgO films with the STM: From a tip-mediated to an intrinsic emission characteristic. New J. Phys. 10, 013010 (2008).

    Article  Google Scholar 

  21. Sushko, P. V., Shluger, A. L., Hirano, M. & Hosono, H. From insulator to electride: A theoretical model of nanoporous oxide 12CaO·7Al2O3 . J. Am. Chem. Soc. 129, 942–951 (2007).

    Article  CAS  Google Scholar 

  22. Stevenson, J. R. & Hensley, E. B. Thermionic and photoelectric emission from magnesium oxide. J. Appl. Phys. 32, 166 (1961).

    Article  CAS  Google Scholar 

  23. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    Article  CAS  Google Scholar 

  24. Mather, P. G., Read, J. C. & Buhrman, R. A. Disorder, defects, and band gaps in ultrathin (001) MgO tunnel barrier layers. Phys. Rev. B 73, 205412 (2006).

    Article  Google Scholar 

  25. Barth, C. & Henry, C. R. Kelvin probe force microscopy on surfaces of UHV cleaved ionic crystals. Nanotechnology 17, S155S161 (2006).

    Google Scholar 

  26. Sato, Y. et al. Atomic and electronic structure of symmetric tilt grain boundary in ZnO bicrystal with linear current–voltage characteristic. J. Mater. Sci. 40, 3059–3066 (2005).

    Article  CAS  Google Scholar 

  27. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron–gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  28. Kresse, G. & Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  29. Eby, J. E., Teegarden, K. J. & Dutton, D. B. Ultraviolet absorption of alkali halides. Phys. Rev. 116, 1099–1105 (1959).

    Article  CAS  Google Scholar 

  30. Lapiano-Smith, D. A., Eklund, E. A., Himpsel, F. J. & Terminello, L. J. Epitaxy of LiF on Ge(100). Appl. Phys. Lett. 59, 2174–2176 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computer time on HPCx was provided through EPSRC grant EP/D504872/1. We acknowledge useful discussions with P. Sushko, M. Stoneham and G. Besurker. K.P.M. is supported by EPSRC grant GR/S80080/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith P. McKenna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenna, K., Shluger, A. Electron-trapping polycrystalline materials with negative electron affinity. Nature Mater 7, 859–862 (2008). https://doi.org/10.1038/nmat2289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing