Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials

Abstract

Ge–Sb–Te materials are used in optical DVDs and non-volatile electronic memories (phase-change random-access memory). In both, data storage is effected by fast, reversible phase changes between crystalline and amorphous states. Despite much experimental and theoretical effort to understand the phase-change mechanism, the detailed atomistic changes involved are still unknown. Here, we describe for the first time how the entire write/erase cycle for the Ge2Sb2Te5 composition can be reproduced using ab initio molecular-dynamics simulations. Deep insight is gained into the phase-change process; very high densities of connected square rings, characteristic of the metastable rocksalt structure, form during melt cooling and are also quenched into the amorphous phase. Their presence strongly facilitates the homogeneous crystal nucleation of Ge2Sb2Te5. As this simulation procedure is general, the microscopic insight provided on crystal nucleation should open up new ways to develop superior phase-change memory materials, for example, faster nucleation, different compositions, doping levels and so on.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model configurations showing crystallization of GST materials in simulations of slow cooling starting from the liquid, and of annealing the amorphous state obtained by rapid melt quenching.
Figure 2: Two representations of the high densities of crystal seeds in models of Ge2Sb2Te5 melts present at temperatures much above the melting point.
Figure 3: Different aspects of the structural evolution of a crystallizing melt of Ge2Sb2Te5 during a stepwise quench.
Figure 4: Structural characterization of the amorphous state of 225.
Figure 5: Structural evolution during a complete simulated phase-change cycle (liquid–amorphous–crystal) for 225.
Figure 6: Different evolution of the local structure around Ge atoms during slow and rapid quenches from the melt of Ge2Sb2Te5, leading to crystalline and amorphous products, respectively.

Similar content being viewed by others

References

  1. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid phase transitions of GeTe–Sb2Te3 . J. Appl. Phys. 69, 2849–2856 (1991).

    Article  CAS  Google Scholar 

  2. Lankhorst, H. R., Ketelaars, W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  CAS  Google Scholar 

  3. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  4. Lee, S.-H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low power phase-change nanowire memory. Nature Mater. 2, 626–630 (2007).

    CAS  Google Scholar 

  5. Kohara, S. et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous phases. Appl. Phys. Lett. 89, 201910 (2006).

    Article  Google Scholar 

  6. Volkert, C. A. & Wuttig, M. Modelling of laser pulsed heating and quenching in optical data storage media. J. Appl. Phys. 86, 1808–1816 (1999).

    Article  CAS  Google Scholar 

  7. Lang, C., Song, S. A., Manh, D. N. & Cockayne, D. J. H. Building blocks of amorphous Ge2Sb2Te5 . Phys. Rev. B 76, 054101 (2007).

    Article  Google Scholar 

  8. Eom, J.-H. et al. Global and local structures of the Ge–Sb–Te ternary alloy system for a phase-change memory device. Phys. Rev. B 73, 214202 (2006).

    Article  Google Scholar 

  9. Caravati, S., Bernasconi, M., Kuhna, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007).

    Article  Google Scholar 

  10. Wełnic, W., Botti, S., Reining, L. & Wuttig, M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98, 236403 (2007).

    Article  Google Scholar 

  11. Welnic, W. et al. Unraveling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56–62 (2006).

    Article  CAS  Google Scholar 

  12. Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122–128 (2007).

    Article  CAS  Google Scholar 

  13. Sun, Z., Zhou, J. & Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 96, 055507 (2006).

    Article  Google Scholar 

  14. Sun, Z., Zhou, J. & Ahuja, R. Unique melting behaviour in phase-change materials for rewritable data storage. Phys. Rev. Lett. 98, 055505 (2007).

    Article  Google Scholar 

  15. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  16. Coombs, J. H., Jongenelis, A. P. J. M., van Es-Spiekman, W. & Jacobs, B. A. J. Laser-induced crystallization phenomena in GeTe-based alloys. II. Composition dependence of nucleation and growth. J. Appl. Phys. 78, 4918–4927 (1995).

    Article  CAS  Google Scholar 

  17. Kalb, J. A., Spaepen, F. & Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 (2005).

    Article  Google Scholar 

  18. Chen, Y. C. et al. International Electron Devices Meeting, 2006. IEDM’06 Vols 1,2, 531–534 (IEEE, New York, 2006).

    Google Scholar 

  19. Matsunaga, T., Yamada, N. & Kubota, Y. Structures of stable and metastable Ge2Sb2Te5, An intermetallic compound in GeTe–Sb2Te3 pseudobinary systems. Acta Crystallogr. B 60, 685–691 (2004).

    Article  Google Scholar 

  20. Akola, J. & Jones, R. O. Structural phase transitions on the nanoscale: The crucial pattern in the phase materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007).

    Article  Google Scholar 

  21. Kooi, B. J., Groot, W. M. G. & De Hosson, J. Th. M. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 . J. Appl. Phys. 95, 924–932 (2003).

    Article  Google Scholar 

  22. Weidenhof, V., Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168–3176 (2001).

    Article  CAS  Google Scholar 

  23. van Pieterson, L., Lankhorst, M. H. R., van Schijndel, M., Kuiper, A. E. T. & Roosen, J. H. J. Phase-change recording materials with a growth-dominated crystallization. J. Appl. Phys. 97, 083520 (2005).

    Article  Google Scholar 

  24. Privitera, S., Bongiorno, C., Rimini, E. & Zonca, R. Crystal nucleation and growth processes in Ge2Sb2Te5 . Appl. Phys. Lett. 84, 4448–4450 (2004).

    Article  CAS  Google Scholar 

  25. Kolobov, A.V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  26. Jovari, P. et al. ‘Wrong bonds’ in sputtered amorphous Ge2Sb2Te5 . J. Phys. Condens. Matter 19, 335212 (2007).

    Article  CAS  Google Scholar 

  27. Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  28. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  29. Klein, A. et al. Changes in electronic structure and chemical bonding upon crystallization of the phase change material Ge1Sb2Te4 . Phys. Rev. Lett. 100, 016402 (2008).

    Article  CAS  Google Scholar 

  30. Baker, D., Paesler, M., Lucovsky, G. & Taylor, P. C. EXAFS study of amorphous Ge2Sb2Te5 . J. Non-Cryst. Solids 32, 1621–1623 (2005).

    Google Scholar 

  31. Yeh, T.-T., Hsieh, T.-E. & Shieh, H.-P. D. Enhancement of data transfer rate of phase change optical disk by doping nitrogen in Ge–In–Sb–Te recording layer. Japan. J. Appl. Phys. 43, 5316–5320 (2004).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  34. Njoroge, W. K., Woltgens, H.-W. & Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 20, 230–233 (2000).

    Article  Google Scholar 

  35. Bichara, C., Johnson, M. & Gaspard, J.-P. Octahedral structure of liquid GeSb2Te4 alloy: First-principles molecular dynamics study. Phys. Rev. B 75, 060201(R) (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Stimulating discussions with A. L. Greer, J. Hafner, G. Kresse, D. Cockayne, J.-Y. Raty, T. Bucko, S. Kugler, G. Csanyi, K. Borisenko and P. Jovari are gratefully acknowledged. J.H. is grateful for the award of a Marie-Curie Fellowship. All simulations were carried out using the Cambridge High-Performance Computer Facility.

Author information

Authors and Affiliations

Authors

Contributions

J.H. was responsible for carrying out the simulations and the analysis of the results. S.R.E. was responsible for the project planning and for writing much of the paper.

Corresponding author

Correspondence to S. R. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegedüs, J., Elliott, S. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nature Mater 7, 399–405 (2008). https://doi.org/10.1038/nmat2157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing