Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanical gas capture and release in a network solid via multiple single-crystalline transformations

Abstract

Metal–organic frameworks have demonstrated functionality stemming from both robustness and pliancy and as such, offer promise for a broad range of new materials. The flexible aspect of some of these solids is intriguing for so-called ‘smart’ materials in that they could structurally respond to an external stimulus. Herein, we present an open-channel metal–organic framework that, on dehydration, shifts structure to form closed pores in the solid. This occurs through multiple single-crystal-to-single-crystal transformations such that snapshots of the mechanism of solid-state conversion can be obtained. Notably, the gas composing the atmosphere during dehydration becomes trapped in the closed pores. On rehydration, the pores open to release the trapped gas. Thus, this new material represents a thermally robust and porous material that is also capable of dynamically capturing and releasing gas in a controlled manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-crystal X-ray structures of fully hydrated 1, intermediates 2a and 3, and dehydrated 4.
Figure 2: X-ray diffraction images of a single crystal of 1 undergoing heating while on the diffractometer.
Figure 3: Single crystals of 4.
Figure 4: Hyperpolarized 129Xe NMR of a sample of 1 on drying.
Figure 5: Accessibility of the pores in 4 to spheres of different radii representing different gases as modelled in atoms.
Figure 6: Release of NH3 from 4 on rehydration.

Similar content being viewed by others

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  2. Kitagawa, S., Kitaura, R. & Noro, S.-i. Functional porous coordination polymers. Angew. Chem. Int. Edn 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2781–2804 (2003).

  4. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  5. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  Google Scholar 

  6. Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    Article  CAS  Google Scholar 

  7. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

  8. Wu, C.-D., Hu, A., Zhang, L. & Lin, W. A homochiral porous metal–organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 127, 8940–8941 (2005).

    Article  CAS  Google Scholar 

  9. Pan, L. et al. Porous lanthanide-organic frameworks: Synthesis, characterization, and unprecedented gas adsorption properties. J. Am. Chem. Soc. 125, 3062–3067 (2003).

    Article  CAS  Google Scholar 

  10. Chandler, B. D., Cramb, D. T. & Shimizu, G. K. H. Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks. J. Am. Chem. Soc. 128, 10403–10412 (2006).

    Article  CAS  Google Scholar 

  11. Dinca, M., Yu, A. F. & Long, J. R. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: Syntheses, structures, and hydrogen storage properties. J. Am. Chem. Soc. 128, 8904–8913 (2006).

    Article  CAS  Google Scholar 

  12. Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Edn 44, 4670–4679 (2005).

    Article  CAS  Google Scholar 

  13. Zhao, X. et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306, 1012–1015 (2004).

    Article  CAS  Google Scholar 

  14. Mueller, U. et al. Metal-organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    Article  CAS  Google Scholar 

  15. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  16. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  17. Uemura, K., Matsuda, R. & Kitagawa, S. Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005).

    Article  CAS  Google Scholar 

  18. Bradshaw, D., Warren, J. E. & Rosseinsky, M. J. Reversible concerted ligand substitution at alternating metal sites in an extended solid. Science 315, 977–980 (2007).

    Article  CAS  Google Scholar 

  19. Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater. 6, 142–148 (2007).

    Article  CAS  Google Scholar 

  20. Halder, G. H., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  Google Scholar 

  21. Soldatov, D. V. et al. Alpha- and beta-bis(1,1,1-trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II): Transforming the dense polymorph into a versatile new microporous framework. J. Am. Chem. Soc. 121, 4179–4188 (1999).

    Article  CAS  Google Scholar 

  22. Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  23. Dybtsev, D. N., Chun, H. & Kim, K. Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Edn 43, 5033–5036 (2004).

    Article  CAS  Google Scholar 

  24. Yamada, K. et al. Metal-complex assemblies constructed from the flexible hinge-like ligand H2bhnq: Structural versatility and dynamic behavior in the solid state. Chem.-Eur. J. 10, 2648–2660 (2004).

    Article  Google Scholar 

  25. Cussen, E. J., Claridge, J. B., Rosseinsky, M. J. & Kepert, C. J. Flexible sorption and transformation behavior in a microporous metal–organic framework. J. Am. Chem. Soc. 124, 9574–9581 (2002).

    Article  CAS  Google Scholar 

  26. Zhang, J. P., Lin, Y. Y., Zhang, W. X. & Chen, X. M. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J. Am. Chem. Soc. 127, 14162–14163 (2005).

    Article  CAS  Google Scholar 

  27. Soldatov, D. V., Moudrakovski, I. L., Ratcliffe, C. I., Dutrisac, R. & Ripmeester, J. A. Sorption of xenon, methane, and organic solvents by a flexible microporous polymer catena-bis(Dibenzoylmethanato)-(4,4′-bipyridyl)nickel(II). Chem. Mater. 15, 4810–4818 (2003).

    Article  CAS  Google Scholar 

  28. Choi, H. J. & Suh, M. P. Dynamic and redox active pillared bilayer open framework: Single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. J. Am. Chem. Soc. 126, 15844–15851 (2004).

    Article  CAS  Google Scholar 

  29. Chen, C. L., Goforth, A. M., Smith, M. D., Su, C. Y. & zur Loye, H. C. [Co2-(ppca)2(H2O)(V4O12)0.5]: A framework material exhibiting reversible shrinkage and expansion through a single-crystal-to-single-crystal transformation involving a change in the cobalt coordination environment. Angew. Chem. Int. Edn 44, 6673–6677 (2005).

    Article  CAS  Google Scholar 

  30. Ohmori, O., Kawano, M. & Fujita, M. Crystal-to-crystal guest exchange of large organic molecules within a 3D coordination network. J. Am. Chem. Soc. 126, 16292–16293 (2004).

    Article  CAS  Google Scholar 

  31. Wu, C. D. & Lin, W. B. Highly porous, homochiral metal-organic frameworks: Solvent-exchange-induced single-crystal to single-crystal transformations. Angew. Chem. Int. Edn 44, 1958–1961 (2005).

    Article  CAS  Google Scholar 

  32. Seki, K. Dynamic channels of a porous coordination polymer responding to external stimuli. Phys. Chem. Chem. Phys. 4, 968–1971 (2002).

    Article  Google Scholar 

  33. Mäkinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. Highly selective guest uptake in a silver sulfonate network imparted by a tetragonal to triclinic shift in the solid state. Chem.-Eur. J. 7, 5176–5182 (2001).

    Article  Google Scholar 

  34. Shimizu, G. K. H. Assembly of metal ions and ligands with adaptable coordinative tendencies as a route to functional metal-organic solids. J. Solid State Chem. 178, 2519–2526 (2005).

    Article  CAS  Google Scholar 

  35. Khuong, T. A. V., Nunez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    Article  CAS  Google Scholar 

  36. Kitagawa, S. & Uemura, K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 34, 109–119 (2005).

    Article  CAS  Google Scholar 

  37. Suh, M. P. & Cheon, Y. E. Recent advances in the dynamics of single crystal to single crystal transformations in metal-organic open frameworks. Aust. J. Chem. 59, 605–612 (2006).

    Article  CAS  Google Scholar 

  38. Uemura, K., Kitagawa, S., Fukui, K. & Saito, K. A contrivance for a dynamic porous framework: Cooperative guest adsorption based on square grids connected by amide–amide hydrogen bonds. J. Am. Chem. Soc. 126, 3817–3828 (2004).

    Article  CAS  Google Scholar 

  39. Suh, M. P., Ko, J. W. & Choi, H. J. A metal-organic bilayer open framework with a dynamic component: Single-crystal-to-single-crystal transformations. J. Am. Chem. Soc. 124, 10976–10977 (2002).

    Article  CAS  Google Scholar 

  40. Takaoka, K., Kawano, M., Tominaga, M. & Fujita, M. In situ observation of a reversible single crystal-to-single-crystal apical-ligand exchange reaction in a hydrogen-bonded 2D coordination network. Angew. Chem. Int. Edn 44, 2151–2154 (2005).

    Article  CAS  Google Scholar 

  41. Zhang, J. P., Lin, Y. Y., Zhang, W. X. & Chen, X. M. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J. Am. Chem. Soc. 127, 14162–14163 (2005).

    Article  CAS  Google Scholar 

  42. Takamizawa, S., Nakata, E., Yokoyama, H., Mochizuki, K. & Mori, W. Carbon dioxide inclusion phases of a transformable 1D coordination polymer host [Rh2(O2CPh)4(pyz)]n . Angew. Chem. Int. Edn 42, 4331–4334 (2003).

    Article  CAS  Google Scholar 

  43. Enright, G. D., Udachin, K. A., Moudrakovski, I. L. & Ripmeester, J. A. Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 125, 9896–9897 (2003).

    Article  CAS  Google Scholar 

  44. Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    Article  CAS  Google Scholar 

  45. Ananchenko, G. S. et al. Guest exchange in single crystals of van der Waals nanocapsules. Angew. Chem. Int. Edn 45, 1585–1588 (2006).

    Article  CAS  Google Scholar 

  46. Atwood, J. L., Barbour, L. J. & Jerga, A. Storage of methane and freon by interstitial van der Waals confinement. Science 298, 1000–1002 (2002).

    Article  CAS  Google Scholar 

  47. Leontiev, A. V. & Rudkevich, D. M. Encapsulation of gases in the solid state. Chem. Commun. 1468–1469 (2004).

  48. Souza, D. C. S., Pralong, V., Jacobson, A. J. & Nazar, L. F. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296, 2012–2015 (2002).

    Article  CAS  Google Scholar 

  49. Moudrakovski, I. L. et al. Chemical shift imaging with continuously flowing hyperpolarized xenon for the characterization of materials. J. Magn. Reson. 144, 372–377 (2000).

    Article  CAS  Google Scholar 

  50. Driehuys, B. et al. High-volume production of laser-polarized Xe-129. Appl. Phys. Lett. 69, 1668–1670 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.T.C. and G.K.H.S. thank the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David T. Cramb or George K. H. Shimizu.

Supplementary information

Supplementary Information

Supplementary figures S1-S16 (PDF 652 kb)

Supplementary video (MOV 8438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandler, B., Enright, G., Udachin, K. et al. Mechanical gas capture and release in a network solid via multiple single-crystalline transformations. Nature Mater 7, 229–235 (2008). https://doi.org/10.1038/nmat2101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing