Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hard-X-ray dark-field imaging using a grating interferometer

Abstract

Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods1. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques2,3,4,5,6,7,8,9,10,11, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources12,13,14,15,16,17,18. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme11. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray grating interferometer.
Figure 2: X-ray imaging of a test sample consisting of a PTFE (Teflon) plastic tube and a natural rubber tube.
Figure 3: Imaging of a biological specimen (chicken wing).

Similar content being viewed by others

References

  1. Murphy, D. B. Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York, 2001).

    Google Scholar 

  2. Bonse, U. & Hart, M. An X-ray interferometer with long separated interfering beam paths. Appl. Phys. Lett. 6, 155–156 (1965).

    Article  Google Scholar 

  3. Davis, T. J., Gao, D., Gureyev, T. E., Stevenson, A. W. & Wilkins, A. W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373, 595–598 (1995).

    Article  CAS  Google Scholar 

  4. Ingal, V. N. & Beliaevskaya, E. A. X-ray plane-wave topography observation of the phase contrast from non-crystalline objects. J. Phys. D 28, 2314–2317 (1995).

    Article  CAS  Google Scholar 

  5. Chapman, D. et al. Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42, 2015–2025 (1997).

    Article  CAS  Google Scholar 

  6. Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66, 5486–5492 (1995).

    Article  CAS  Google Scholar 

  7. Wilkins, S. W., Gureyev, T. E., Gao, D., Pogany, A. & Stevenson, A. W. Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335–337 (1996).

    Article  CAS  Google Scholar 

  8. Momose, A. Recent advances in X-ray phase imaging. Japan J. Appl. Phys. 44, 6355–6267 (2005).

    Article  CAS  Google Scholar 

  9. Momose, A., Yashiro, W., Takeda, Y., Suzuki, Y. & Hattori, T. Phase tomography by X-ray Talbot interferometry for biological imaging. Japan J. Appl. Phys. 45, 5254–5262 (2006).

    Article  CAS  Google Scholar 

  10. Weitkamp, T. et al. Quantitative X-ray phase imaging with a grating interferometer. Opt. Express 13, 6296–6304 (2005).

    Article  Google Scholar 

  11. Pfeiffer, F., Weitkamp, T., Bunk, O. & David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Phys. 2, 258–261 (2006).

    Article  CAS  Google Scholar 

  12. Morrison, G. R. & Browne, M. T. Dark-field imaging with the scanning-transmission X-ray microscope. Rev. Sci. Instrum. 63, 611–614 (1992).

    Article  Google Scholar 

  13. Chapman, H. N., Jacobsen, C. & Williams, S. A characterisation of dark-field imaging of colloidal gold labels in a scanning transmission X-ray microscope. Ultramicroscopy 62, 191–213 (1996).

    Article  CAS  Google Scholar 

  14. Suzuki, Y. & Uchida, F. Dark-field imaging in hard X-ray scanning microscopy. Rev. Sci. Instrum. 66, 1468–1470 (1995).

    Article  CAS  Google Scholar 

  15. Pagot, E. et al. A method to extract quantitative information in analyzer-based X-ray phase contrast imaging. Appl. Phys. Lett. 82, 3421–3423 (2003).

    Article  CAS  Google Scholar 

  16. Levine, L. E. & Long, G. G. X-ray imaging with ultra-small-angle X-ray scattering as a contrast mechanism. J. Appl. Cryst. 37, 757–765 (2004).

    Article  CAS  Google Scholar 

  17. Ando, M. et al. Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan. Nucl. Instrum. Methods A 548, 1–16 (2005).

    Article  CAS  Google Scholar 

  18. Shimao, D., Sugiyama, H., Kunisada, T. & Ando, M. Articular cartilage depicted at optimized angular position of Laue angular analyzer by X-ray dark-field imaging. Appl. Radiat. Isot. 64, 868–874 (2006).

    Article  CAS  Google Scholar 

  19. von Ardenne, M. Das Elektronen-Rastermikroskop. Z. Tech. Phys. 19, 407–416; Z. Phys. 109, 553–572 (1938).

  20. Ramberg, E. G. Phase contrast in electron microscope images. J. Appl. Phys. 20, 441–444 (1949).

    Article  Google Scholar 

  21. Lohmann, A. W. & Silva, D. E. An interferometer based on the Talbot effect. Opt. Commun. 2, 413–415 (1971).

    Article  Google Scholar 

  22. Yokozeki, S. & Suzuki, T. Shearing interferometer using grating as beam splitter. Appl. Opt. 10, 1575–1579 (1971).

    Article  CAS  Google Scholar 

  23. Pfeiffer, F. et al. Shearing interferometer for quantifying the coherence of hard X-ray beams. Phys. Rev. Lett. 94, 164801 (2005).

    Article  CAS  Google Scholar 

  24. Weitkamp, T., David, C., Kottler, C., Bunk, O. & Pfeiffer, F. Tomography with grating interferometers at low-brilliance sources. SPIE Int. Soc. Opt. Eng. 6318, 28–32 (2006).

    Google Scholar 

  25. Harding, G. X-ray scatter tomography for explosives detection. Radiat. Phys. Chem. 71, 869–881 (2004).

    Article  CAS  Google Scholar 

  26. Harding, G. & Schreiber, B Coherent X-ray scatter imaging and its applications in biomedical science and industry. Radiat. Phys. Chem. 56, 229–245 (1999).

    Article  CAS  Google Scholar 

  27. Fernandez, M. et al. Small-angle X-ray scattering studies of human breast tissue samples. Phys. Med. Biol. 47, 577–592 (2002).

    Article  CAS  Google Scholar 

  28. Fernandez, M. et al. Human breast cancer in vitro: Matching histo-pathology with small-angle X-ray scattering and diffraction enhanced X-ray imaging. Phys. Med. Biol. 50, 2991–3006 (2005).

    Article  Google Scholar 

  29. David, C. et al. Fabrication of diffraction gratings for hard X-ray phase contrast imaging. Microelectron. Eng. 84, 1172–1177 (2007).

    Article  CAS  Google Scholar 

  30. Bech, M. et al. X-Ray imaging with the PILATUS 100K detector. Appl. Radiat. Isot. (2007, in the press) (doi:10.1016/j.apradiso.2007.10.003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge C. Kottler for help with the experiments and T. Weitkamp and S. Wilkins for discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.P., M.B. and C.D. conceived the experimental set up. C.D. and C.G. designed and fabricated the gratings. O.B. interfaced the experimental hardware and data acquisition system. F.P. wrote the data analysis software. C.B., E.F.E. and P.K. were responsible for the detector hardware, software and calibration. F.P. and M.B. analysed and interpreted the data.

Corresponding author

Correspondence to F. Pfeiffer.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, F., Bech, M., Bunk, O. et al. Hard-X-ray dark-field imaging using a grating interferometer. Nature Mater 7, 134–137 (2008). https://doi.org/10.1038/nmat2096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing