Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sliding charge-density wave in manganites

Abstract

Stripe and chequerboard phases appear in many metal oxide compounds, and are thought to be linked to exotic behaviour such as high-temperature superconductivity1 and colossal magnetoresistance2. It is therefore extremely important to understand the fundamental nature of such phases. The so-called stripe phase of the manganites has long been interpreted as the localization of charge at atomic sites3,4,5,6. Here, we present resistance measurements on La0.50Ca0.50MnO3 that strongly suggest that this state is in fact a prototypical charge-density wave (CDW) that undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. The CDW-type behaviour of the manganite superstructure suggests that unusual transport and structural properties do not require exotic physics, but could emerge when a well-understood phase (the CDW) coexists with disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of the differential resistance with temperature, demonstrating activated behaviour.
Figure 2: Variation of the differential resistance with current at different temperatures and with the current passed parallel and perpendicular to the superstructure.
Figure 3: Frequency and current dependence of the broadband noise.
Figure 4: Variation of the magnitude of the noise with frequency, temperature and field, with the current passed parallel and perpendicular to the superstructure.

Similar content being viewed by others

References

  1. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  CAS  Google Scholar 

  2. Cheong, S.-W. & Hwang, H. Y. in Colossal Magnetoresistance Oxides (ed. Tokura, Y.) Ch. 7, 237–280 (Gordon and Breach, London, 2000).

    Google Scholar 

  3. Chen, C. H., Mori, S. & Cheong, S.-W. Anomalous melting transition of the charge-ordered state in manganites. Phys. Rev. Lett. 83, 4792–4795 (1999).

    Article  CAS  Google Scholar 

  4. Chen, C. H. & Cheong, S.-W. Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3 . Phys. Rev. Lett. 76, 4042–4045 (1996).

    Article  CAS  Google Scholar 

  5. Chen, C. H., Cheong, S.-W. & Hwang, H. Y. Charge-ordered stripes in La1−xCaxMnO3 with x>0.5. J. Appl. Phys. 81, 4326–4330 (1997).

    Article  CAS  Google Scholar 

  6. Mori, S., Chen, C. H. & Cheong, S.-W. Pairing of the charge-ordered stripes in (La,Ca)MnO3 . Nature 392, 473–476 (1998).

    Article  CAS  Google Scholar 

  7. Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).

    Article  CAS  Google Scholar 

  8. Loudon, J. C. et al. Weak charge-lattice coupling requires reinterpretation of stripes of charge order in La1−xCaxMnO3 . Phys. Rev. Lett. 94, 097202 (2005).

    Article  CAS  Google Scholar 

  9. Cox, S. et al. Evidence for the charge-density-wave nature of the stripe phase in manganites. J. Phys. Condens. Matter 19, 192201 (2007).

    Article  Google Scholar 

  10. Grüner, G. Density Waves in Solids (Addison-Wesley, Reading, 1994).

    Google Scholar 

  11. Majewski, P., Epple, L., Rozumek, M. & Schluckwerder, H. Phase diagram studies in the quasi binary systems LaMnO3–SrMnO3 and LaMnO3–CaMnO3 . J. Mater. Res. 15, 1161–1166 (2000).

    Article  CAS  Google Scholar 

  12. Cox, S. et al. Strain control of superlattice implies weak charge-lattice coupling in La0.5Ca0.5MnO3 . Phys. Rev. B 73, 132401 (2006).

    Article  Google Scholar 

  13. Sanchez, D. et al. High resolution determination of ferromagnetic metallic limit in epitaxial La1−xCaxMnO3 films on NdGaO3 . Appl. Phys. Lett. 89, 142509 (2006).

    Article  Google Scholar 

  14. Butorin, S. M., Såthe, C., Saalem, F., Nordgren, J. & Zhu, X. M. Probing the Mn3+ sublattice in La0.5Ca0.5MnO3 by resonant inelastic soft X-ray scattering at the Mn L2,3 edge. Surf. Rev. Lett. 9, 989–982 (2002).

    Article  CAS  Google Scholar 

  15. Nyeanchi, E. B., Krylov, I. P., Zhu, X.-M. & Jacobs, N. Ferromagnetic ground state in La0.5Ca0.5MnO3 thin films. Eur. Phys. Lett. 48, 228–232 (1999).

    Article  CAS  Google Scholar 

  16. Xiong, Y. M. et al. Magnetotransport properties in La1−xCaxMnO3 (x=0.33, 0.5) thin films deposited on different substrates. J. Appl. Phys. 97, 083909 (2005).

    Article  Google Scholar 

  17. Ong, N. P. et al. Effect of impurities on the anomalous transport properties of NbSe3 . Phys. Rev. Lett. 42, 811–814 (1979).

    Article  CAS  Google Scholar 

  18. Chaikin, P. M. et al. Thermopower of doped and damaged NbSe3 . Solid State Commun. 39, 553–557 (1981).

    Article  CAS  Google Scholar 

  19. Blumberg, G. et al. Sliding density wave in Sr14Cu24O41 ladder compounds. Science 297, 584–587 (2002).

    Article  CAS  Google Scholar 

  20. Maeda, A. et al. Sliding conduction by the quasi-one-dimensional charge-ordered state in Sr14−xCaxCu24O41 . Phys. Rev. B 67, 115115 (2003).

    Article  Google Scholar 

  21. Alers, G. B., Ramirez, A. P. & Jin, S. 1/f resistance noise in the large magnetoresistance manganites. Appl. Phys. Lett. 68, 3644–3646 (1996).

    Article  CAS  Google Scholar 

  22. Cox, S. et al. Very weak electron–phonon coupling and strong strain coupling in manganites. Preprint at <http://arxiv.org/abs/0704.2598> (2007).

  23. Davis, T. A. et al. Evidence for a stress-induced incommensurate to commensurate charge-density-wave transition in TaS3 . Phys. Rev. B 39, 10094–10100 (1989).

    Article  CAS  Google Scholar 

  24. Loudon, J. C. et al. On the microstructure of the charge density wave observed in La1−xCaxMnO3 . Phil. Mag. 85, 999–1015 (2005).

    Article  CAS  Google Scholar 

  25. Maeda, A., Naito, M. & Tanaka, S. Broad and narrow band noise of monoclinic TaS3 . Solid State Commun. 47, 1001–1005 (1983).

    Article  CAS  Google Scholar 

  26. Maher, M. P. et al. Size effects, phase slip, and the origin of fα noise in NbSe3 . Phys. Rev. B 43, R9968–R9971 (1991).

    Article  Google Scholar 

  27. Zettl, A. & Grüner, G. Broad band noise associated with the current carrying charge density wave state in TaS3 . Solid State Commun. 46, 29–32 (1983).

    Article  CAS  Google Scholar 

  28. Maeda, A., Uchinokura, K. & Tanaka, S. The effect of strong impurities on the low-frequency broad-band noise in NbSe3 . Synth. Met. 19, 825–830 (1987).

    Article  CAS  Google Scholar 

  29. Lee, P. A. & Rice, T. M. Electric field depinning of charge density waves. Phys. Rev. B 19, 3970–3980 (1979).

    Article  CAS  Google Scholar 

  30. Saitoh, T. et al. Temperature dependent pseudogaps in colossal magnetoresistive oxides. Phys. Rev. B 62, 1039–1043 (2000).

    Article  CAS  Google Scholar 

  31. Kida, N. & Tonouchi, M. Spectroscopic evidence for a charge-density-wave condensate in a charge-ordered manganite: Observation of a collective excitation mode in Pr0.7Ca0.3MnO3 by using THz time-domain spectroscopy. Phys. Rev. B 66, 024401 (2002).

    Article  Google Scholar 

  32. Marley, A. C., Bloom, I. & Weissman, M. B. Temperature and electric-field dependences of characteristic noise patterns in mesoscopic ortho-TaS3 charge density waves. Phys. Rev. B 49, 16156–16161 (1994).

    Article  CAS  Google Scholar 

  33. Bloom, I., Marley, A. C. & Weissman, M. B. Discrete fluctuators and broad-band noise in the charge-density-wave in NbSe3 . Phys. Rev. B 50, 5081–5088 (1994).

    Article  CAS  Google Scholar 

  34. McDonald, R. D. et al. Charge-density waves survive the Pauli paramagnetic limit. Phys. Rev. Lett. 93, 076405 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Harrison, N. D. Mathur, P. A. Midgley, G. Kotliar and E. Rosten for helpful comments. S.C. acknowledges support from the Seaborg Institute. The sample was grown and TEM was carried out at the University of Cambridge, where research was financially supported by the UK EPSRC. This research was financially supported by the US Department of Energy (DoE) under Grant LDRD-DR 20070013. Work at NHMFL is carried out under the auspices of the NSF, the State of Florida and the US DoE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, S., Singleton, J., McDonald, R. et al. Sliding charge-density wave in manganites. Nature Mater 7, 25–30 (2008). https://doi.org/10.1038/nmat2071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing