Review Article | Published:

The emergence of spin electronics in data storage

Nature Materials volume 6, pages 813823 (2007) | Download Citation

Subjects

Abstract

Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157–R167 (2002).

  2. 2.

    Electrons in transition metals. Adv. Phys. 13, 325–422 (1964).

  3. 3.

    & Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190–1192 (1968).

  4. 4.

    & Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F 6, 849–871 (1976).

  5. 5.

    , & Spin relaxation effects in the perpendicular magnetoresistance of magnetic multilayers. Phys. Rev. B 52, 6513–6521 (1995).

  6. 6.

    et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

  7. 7.

    , , & Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

  8. 8.

    & in Spin Dependent Transport in Magnetic Nanostructures (eds Maekawa, S. & Shinjo, T.) Ch. 2, 47–112 (CRC, Boca Raton, 2002).

  9. 9.

    , & in Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures (eds Mills, D. M. & Bland, J. A. C.) Ch. 6 (Elsevier, Amsterdam, 2006).

  10. 10.

    Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components. US patent 4,949,039 (1990).

  11. 11.

    et al. Magnetoresistive sensor based on the spin valve effect. US patent 5,206,590 (1993).

  12. 12.

    et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

  13. 13.

    Magnetic tunneling applied to memory. J. Appl. Phys. 81, 3758–3763 (1997).

  14. 14.

    & Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

  15. 15.

    , , , & Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

  16. 16.

    & Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

  17. 17.

    , & Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

  18. 18.

    & Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

  19. 19.

    , & Perpendicular giant magnetoresistance of microstructured Fe/Cr magnetic multilayers from 4.2 to 300 K. Phys. Rev. Lett. 70, 3343–3346 (1993).

  20. 20.

    & Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

  21. 21.

    & Magnetic nanowires. J. Magn. Magn. Mater. 200, 338–358 (1999).

  22. 22.

    et al. The applicability of CPP-GMR heads for magnetic recording. IEEE Trans. Magn. 38, 2277–2282 (2002).

  23. 23.

    et al. Fabrication and recording study of all-metal dual-spin-valve CPP read heads. IEEE Trans. Magn. 42, 2444–2446 (2006).

  24. 24.

    Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

  25. 25.

    , , & Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

  26. 26.

    & Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

  27. 27.

    et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

  28. 28.

    , , , & Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

  29. 29.

    , , & Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

  30. 30.

    & Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).

  31. 31.

    , , , & Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 212507 (2007).

  32. 32.

    et al. Commercial TMR heads for hard disk drives: characterization and extendibility at 300 gbit/in2. IEEE Trans. Magn. 42, 97–102 (2006).

  33. 33.

    et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005).

  34. 34.

    et al. A high-speed 128-kb MRAM core for future universal memory applications. IEEE J. Solid-State Circ. 39, 678–683 (2004).

  35. 35.

    Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963).

  36. 36.

    Anisotropie superficielle et surstructures d'orientation magnétique. J. Phys. Rad. 15, 225–239 (1954).

  37. 37.

    & Flat ferromagnetic, epitaxial 48Ni/52Fe(111) films of few atomic layers. Phys. Status Solidi B 27, 313–324 (1968).

  38. 38.

    , & Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Appl. Phys. Lett. 47, 178–180 (1985).

  39. 39.

    , , & Ferromagnetism of very thin films of nickel and cobalt. J. Magn. Magn. Mater. 54–57, 795–796 (1986).

  40. 40.

    , & Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. Lett. 68, 682–685 (1992).

  41. 41.

    & New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

  42. 42.

    et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

  43. 43.

    et al. Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn. 40, 2625–2627 (2004).

  44. 44.

    et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003).

  45. 45.

    , , , & Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).

  46. 46.

    et al. Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice. Phys. Rev. Lett. 56, 2700–2703 (1986).

  47. 47.

    , & Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

  48. 48.

    & Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett. 67, 1602–1605 (1991).

  49. 49.

    Theory of interlayer magnetic coupling. Phys. Rev. B 52, 411–439 (1995).

  50. 50.

    , , , & The energy barriers in antiferromagnetically coupled media. Appl. Phys. Lett. 82, 3701–3703 (2003).

  51. 51.

    , , , & Method of writing to scalable magnetoresistance random access memory element. US patent 6,545,906B1 (2003).

  52. 52.

    et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000).

  53. 53.

    et al. Low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects. Symp. VLSI Techn. Dig., 158–161 (2002).

  54. 54.

    Spin flop switching for magnetic random access memory. Appl. Phys. Lett. 84, 4559–4561 (2004).

  55. 55.

    & Design of Curie point written magnetoresistance random access memory cells. J. Appl. Phys. 93, 7304–7306 (2003).

  56. 56.

    & MRAM write apparatus and method. US patent 6,351,409 (2002).

  57. 57.

    , & Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater. 2, 524–527 (2003).

  58. 58.

    et al. Microwave assisted switching in a Ni81Fe19 ellipsoid. Appl. Phys. Lett. 90, 062503 (2007).

  59. 59.

    Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  60. 60.

    Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  61. 61.

    , , & Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809–3811 (2000).

  62. 62.

    Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J. Phys. Chem. Solids 35, 947–956 (1974).

  63. 63.

    & Observation of s–d exchange force between domain walls and electric current in very thin Permalloy films. J. Appl. Phys. 57, 1266–1269 (1985).

  64. 64.

    Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

  65. 65.

    & in Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006)

  66. 66.

    Spin–current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).

  67. 67.

    & , in Concepts in Spintronics (ed. Maekawa, S.) (Oxford Univ. Press, 2006)

  68. 68.

    , , , & Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).

  69. 69.

    et al. Current-induced magnetization switching in MgO barrier based magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic ferrimagnetic free layer. Jpn. J. Appl. Phys. 45, L1057–L1060 (2006).

  70. 70.

    et al. Novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. IEDM Tech. Dig. 459–462 (2005).

  71. 71.

    et al. 2Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read. ISSCC Dig. Tech. Papers, 480–481 (2007).

  72. 72.

    et al. Three dimensionally stacked NAND Flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm node. IEDM Tech. Dig., 1–4 (2006).

  73. 73.

    , , , & Micromagnetic simulation of spin transfer torque switching combined with precessional motion from a hard axis magnetic field. Appl. Phys. Lett. 89, 252509 (2006).

  74. 74.

    , & Sub-ns spin-transfer switching: compared benefits of free layer biasing and pinned layer biasing. Phys. Rev. B 75, 224430 (2007).

  75. 75.

    et al. A 512 kb cross-point cell MRAM. ISSCC Dig. Tech. Papers, 278–279 (2003).

  76. 76.

    et al. A high-density and high-speed 1T-4MTJ MRAM with voltage offset self-reference sensing scheme. Asian Solid-State Circuits Conf. Dig. Tech. Papers, 303–306 (2006).

  77. 77.

    et al. Thermal select MRAM with a 2-bit cell capability for beyond 65 nm technology node. IEDM Tech. Dig., 1–4 (2006).

  78. 78.

    et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunnelling experiments. Appl. Phys. Lett. 82, 233–235 (2003).

  79. 79.

    et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier. Appl. Phys. Lett. 89, 192505 (2006).

  80. 80.

    , , , & High tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co2Cr0.6Fe0.4Al thin film. Appl. Phys. Lett. 88, 262503 (2006).

  81. 81.

    , , , & Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junction. Phys. Rev. Lett. 93, 216602 (2004).

  82. 82.

    Spin transfer experiments on (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As tunnel junctions. Phys. Rev. B 73, 035303 (2006).

  83. 83.

    Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

  84. 84.

    , & Tunneling anisotropic magnetoresistance-based devices. IEEE Trans. Electron Dev. 54, 977–983 (2007).

  85. 85.

    , , & Electrical manipulation of nonvolatile spin cell based on diluted magnetic semiconductor quantum dots. IEEE Trans. Electron Dev. 54, 1032–1039 (2007).

  86. 86.

    et al. Large magnetoresistance using hybrid spin filter devices. Appl. Phys. Lett. 80, 625–627 (2002).

  87. 87.

    , , & Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor. Phys. Rev. Lett. 74, 5260–5263 (1995).

  88. 88.

    , & Room temperature operation of a high output current magnetic tunnel transistor. Appl. Phys. Lett. 80, 3364–3366 (2002).

  89. 89.

    , & Hot-electron three-terminal devices based on magnetic tunnel junction stacks. Phys. Rev. B 66, 144411 (2002).

  90. 90.

    & Magnetic Domains (Springer, Berlin, 1998).

  91. 91.

    et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 (2002).

  92. 92.

    et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

  93. 93.

    & Multiple layer magnetic logic memory device. UK patent GB2,430,318A (2007).

  94. 94.

    Shiftable magnetic shift register and method using the same. US patent 6,834,005B1 (2004).

  95. 95.

    , , , & Spin electronics device. Patent WO 2006 /064022 (2006).

  96. 96.

    & Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

  97. 97.

    & Domain-wall dynamics and spin-wave excitations with spin-transfer torques. Phys. Rev. Lett. 92, 207203 (2004).

  98. 98.

    et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509 (2003).

  99. 99.

    et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

  100. 100.

    , , , & Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning. Phys. Rev. Lett. 95, 117203 (2005).

  101. 101.

    , , & Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

  102. 102.

    , , & Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

  103. 103.

    & Spin transfer torque in continuous textures: Semiclassical Boltzmann approach. Phys. Rev. B 75, 174414 (2007).

  104. 104.

    et al. Dynamics of a magnetic domain wall in magnetic wires with an artificial neck. J. Appl. Phys. 93, 8430–8432 (2003).

  105. 105.

    et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

  106. 106.

    , & Domain wall diodes in ferromagnetic planar nanowires. Appl. Phys. Lett. 85, 2848–2853 (2004).

  107. 107.

    et al. Artificial domain wall nanotraps in Ni81Fe19 wires. J. Appl. Phys. 95, 6717–6719 (2004).

  108. 108.

    et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 026601 (2005).

  109. 109.

    et al. Current-induced vortex nucleation and annihilation in vortex domain walls. Appl. Phys. Lett. 88, 232507 (2006).

  110. 110.

    , & Current-driven vortex domain wall dynamics by micromagnetic simulations. Phys. Rev. B 73, 184408 (2006).

  111. 111.

    , , & Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).

  112. 112.

    et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).

  113. 113.

    et al. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315, 1553–1556 (2007).

  114. 114.

    , & Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).

  115. 115.

    et al. Domain wall displacement induced by subnanosecond pulsed current. Appl. Phys. Lett. 84, 2820–2822 (2004).

  116. 116.

    et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98, 037204. (2007).

  117. 117.

    , , , & Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 96, 096601 (2006).

  118. 118.

    , , , & Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).

  119. 119.

    & Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).

  120. 120.

    et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

  121. 121.

    , , & Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003).

  122. 122.

    & Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices. J. Appl. Phys. 87, 6674–6679 (2000).

  123. 123.

    et al. Integration of Spin-RAM technology in FPGA circuits. Proc. ICSICT 799–802 (2006).

  124. 124.

    , , & Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater. 5, 817–822 (2006).

  125. 125.

    , , , & Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett. 83, 2937–2939 (2003).

  126. 126.

    & Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

  127. 127.

    & MOS-based spin devices for reconfigurable logic. IEEE Trans. Electron Dev. 54, 961–976 (2007).

  128. 128.

    et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

  129. 129.

    , , & Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Appl. Phys. Lett. 86, 112109 (2005).

  130. 130.

    et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

  131. 131.

    , , , & Charge-switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B 75, 064404 (2007).

  132. 132.

    , , & Semiconductors between spin-polarized sources and drains. IEEE Trans. Electron Dev. 54, 921–932 (2007).

  133. 133.

    , & Estimation of spin-diffusion length from the magnitude of spin-current absorption: multiterminal ferromagnetic/nonferromagnetic hybrid structures. Phys. Rev. B 72, 014461 (2005).

  134. 134.

    , , & Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

  135. 135.

    Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006).

  136. 136.

    et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

  137. 137.

    et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

  138. 138.

    , & Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006).

  139. 139.

    et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

  140. 140.

    , & Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006).

Download references

Acknowledgements

C.C. acknowledges support from the EU Specific Support Action WIND (IST 033658). The authors also benefit from EU contracts Spinswitch (MRTN-CT-2006-035327) and Nanospin (STREP FET 015728).

Author information

Affiliations

  1. Institut d'Electronique Fondamentale, CNRS, UMR8622, 91405 Orsay, France

    • Claude Chappert
  2. Université Paris Sud, 91405 Orsay, France

    • Claude Chappert
    • , Albert Fert
    •  & Frédéric Nguyen Van Dau
  3. Unité Mixte de Physique CNRS-Thales, 91767 Palaiseau, France

    • Albert Fert
    •  & Frédéric Nguyen Van Dau

Authors

  1. Search for Claude Chappert in:

  2. Search for Albert Fert in:

  3. Search for Frédéric Nguyen Van Dau in:

Corresponding author

Correspondence to Claude Chappert.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat2024

Further reading