Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition-metal dimers and physical limits on magnetic anisotropy

Abstract

Recent advances in nanoscience have raised interest in the minimum bit size required for classical information storage. This bit size is determined by the necessity for bistability with suppressed quantum tunnelling and energy barriers that exceed ambient temperatures. In the case of magnetic information storage, much attention has centred on molecular magnets1 with bits consisting of about 100 atoms, magnetic uniaxial anisotropy energy barriers of about 50 K and very slow relaxation at low temperatures. Here, we draw attention to the remarkable magnetic properties of some transition-metal dimers, which have energy barriers approaching 500 K with only two atoms. The spin dynamics of these ultrasmall nanomagnets is strongly affected by a Berry phase, which arises from quasi-degeneracies at the electronic highest occupied molecular orbital energy. In a giant-spin approximation, this Berry phase makes the effective reversal barrier thicker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic molecular orbital diagrams and plots of magnetic anisotropies with associated Berry curvature.

Similar content being viewed by others

References

  1. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford, New York, 2006).

    Book  Google Scholar 

  2. Sellmyer, D. & Skomski, R. Advanced Magnetic Nanostructures (Springer, New York, 2006).

    Book  Google Scholar 

  3. Billas, I. M. L., Châtelain, A. & de Heer, W. A. Magnetism from the atom to the bulk for iron, cobalt and nickel clusters. Science 265, 1682–1684 (1994).

    Article  CAS  Google Scholar 

  4. Skomski, R. Nanomagnetics. J. Phys. Condens. Matter 15, R841–R896 (2003).

    Article  CAS  Google Scholar 

  5. Bader, S. D. Colloquium: Opportunities in nanomagnetism. Rev. Mod. Phys. 78, 1–15 (2006).

    Article  CAS  Google Scholar 

  6. Gambarella, P. et al. Ferromagnetism in one-dimensional monoatomic metal chains. Nature 416, 301–304 (2002).

    Article  Google Scholar 

  7. Tiago, M. L., Zhou, Y., Alemany, M. M. G., Saad, Y. & Chelikowsky, J. R. Evolution of magnetism in iron from atom to the bulk. Phys. Rev. Lett. 97, 147201 (2006).

    Article  Google Scholar 

  8. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  9. Herzberg, G. Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950).

    Google Scholar 

  10. Jamorski, C., Martinez, A., Castro, M. & Salahub, D. R. Structure of cobalt clusters up to the tetramer: A density functional study. Phys. Rev. B 55, 10905–10921 (1997).

    Article  CAS  Google Scholar 

  11. Castro, M., Jamorski, C. & Salahub, D. R. Structure, bonding, and magnetism of small Fen, Con and Nin clusters, n≤5. Chem. Phys. Lett. 271, 133–142 (1997).

    Article  CAS  Google Scholar 

  12. Gutsev, G. L. & Bauschlicher, C. W. Jr. Chemical bonding, electron affinity, and ionization energies of the homonuclear 3d metal dimers. J. Phys. Chem. A 107, 4755–4767 (2003).

    Article  CAS  Google Scholar 

  13. Valiev, M., Bylaska, E. J. & Weare, J. H. Calculations of the electronic structure of the 3d transition metal dimers with projector augmented plane wave method. J. Chem. Phys. 119, 5955–5964 (2003).

    Article  CAS  Google Scholar 

  14. Morse, M. D. Clusters of transition-metal atoms. Chem. Rev. 86, 1049–1109 (1986).

    Article  CAS  Google Scholar 

  15. Lombardi, J. R. & Davis, B. Periodic properties of force constants of small transition-metal lanthanide clusters. Chem. Rev. 102, 2431–2460 (2002).

    Article  CAS  Google Scholar 

  16. Cehovin, A., Canali, C. M. & MacDonald, A. H. Phys. Rev. B 66, 094430 (2002).

    Article  Google Scholar 

  17. Canali, C. M., Cehovin, A. & MacDonald, A. H. Chern numbers for spin models of transition metal nanomagnets. Phys. Rev. Lett. 91, 046805 (2003).

    Article  CAS  Google Scholar 

  18. Lazarovits, B., Simon, P., Zarand, G. & Szunyogh, L. Exotic Kondo effect from magnetic trimers. Phys. Rev. Lett. 95, 077202 (2005).

    Article  CAS  Google Scholar 

  19. Pederson, M. R. & Khanna, S. N. Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules. Phys. Rev. B 60, 9566–9572 (1999).

    Article  CAS  Google Scholar 

  20. Garcia-Fernandez, P., Bersuker, I. B. & Boggs, J. E. Lost topological (Berry) phase factor in electronic structure calculations. Example: The ozone molecule. Phys. Rev. Lett. 96, 163005 (2006).

    Article  Google Scholar 

  21. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  22. Rizzo, C., Rizzo, A. & Bishop, D. M. The Cotton-Mouton effect in gases: Experiment and theory. Int. Rev. Phys. Chem. 16, 81–111 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Bishop, W. de Heer and J. Keto for helpful discussions. This work was supported in part by the Welch Foundation, the National Science Foundation under grant DMR-0606489, the Faculty of Natural Sciences at Kalmar University, the Swedish Research Council under Grant No. 621-2004-4439 and by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tor O. Strandberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and equations (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strandberg, T., Canali, C. & MacDonald, A. Transition-metal dimers and physical limits on magnetic anisotropy. Nature Mater 6, 648–651 (2007). https://doi.org/10.1038/nmat1968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing