Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Warping a single Mn acceptor wavefunction by straining the GaAs host

Abstract

Transition-metal dopants such as Mn determine the ferromagnetism in dilute magnetic semiconductors such as Ga1−xMnxAs. Recently, the acceptor states of Mn dopants in GaAs were found to be highly anisotropic owing to the symmetry of the host crystal. Here, we show how the shape of such a state can be modified by local strain. The Mn acceptors near InAs quantum dots are mapped at room temperature by scanning tunnelling microscopy. Dramatic distortions and a reduction in the symmetry of the wavefunction of the hole bound to the Mn acceptor are observed originating from strain induced by quantum dots. Calculations of the acceptor-state wavefunction in the presence of strain, within a tight-binding model and within an effective-mass model, agree with the experimentally observed shape. The magnetic easy axes of strained lightly doped Ga1−xMnxAs can be explained on the basis of the observed local density of states for the single Mn spin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constant-current STM image.
Figure 2: Comparison of the topography (as measured) for manganese dopants in the strained and unstrained GaAs regions of Fig. 1a.
Figure 3: Calculated logarithm of Mn LDOS.

Similar content being viewed by others

References

  1. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  CAS  Google Scholar 

  2. Awschalom, D. D., Samarth, N. & Loss, D. (eds) in Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

  3. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: Moving beyond (Ga, Mn)As. Nature Mater. 4, 195–202 (2005).

    Article  CAS  Google Scholar 

  4. Takamura, K., Matsukura, F., Chiba, D. & Ohno, H. Magnetic properties of (Al,Ga,Mn)As. Appl. Phys. Lett. 81, 2590–2592 (2002).

    Article  CAS  Google Scholar 

  5. Sawicki, M. et al. Temperature peculiarities of magnetic anisotropy in (Ga,Mn)As: The role of the hole concentration. J. Supercond. 16, 7–10 (2003).

    Article  CAS  Google Scholar 

  6. Sawicki, M. et al. Temperature dependent magnetic anisotropy in (Ga,Mn)As layers. Phys. Rev. B 70, 245325 (2004).

    Article  Google Scholar 

  7. Masmanidis, S. C. et al. Nanomechanical measurement of magnetostriction and magnetic anisotropy in (Ga,Mn)As. Phys. Rev. Lett. 95, 187206 (2005).

    Article  CAS  Google Scholar 

  8. Abolfath, M., Jungwirth, T., Brum, J. & MacDonald, A. H. Theory of magnetic anisotropy in III1−xMnxV ferromagnets. Phys. Rev. B 63, 054418 (2001).

    Article  Google Scholar 

  9. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001).

    Article  Google Scholar 

  10. Kitchen, D., Richardella, A., Tang, J.-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006).

    Article  CAS  Google Scholar 

  11. Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 57, R2037–R2040 (1998).

    Article  CAS  Google Scholar 

  12. Yakunin, A. M. et al. Spatial structure of an individual Mn acceptor in GaAs. Phys. Rev. Lett. 92, 216806 (2004).

    Article  CAS  Google Scholar 

  13. Yakunin, A. M. et al. Spatial structure of Mn–Mn acceptor pairs in GaAs. Phys. Rev. Lett. 95, 256402 (2005).

    Article  CAS  Google Scholar 

  14. Tang, J.-M. & Flatté, M. E. Multiband tight-binding model of local magnetism in Ga1−xMnxAs. Phys. Rev. Lett. 92, 047201 (2004).

    Article  Google Scholar 

  15. Prince, P. J. Strain dependence of the acceptor binding energy in diamond-type semiconductors. Phys. Rev. 124, 713–716 (1961).

    Article  Google Scholar 

  16. Bir, G. L., Butekov, E. I. & Pikus, G. E. Spin and combined resonance on acceptor centres in Ge and Si type crystals I: Paramagnetic resonance in strained and unstrained crystals. J. Phys. Chem. Solids 24, 1467–1474 (1963).

    Article  CAS  Google Scholar 

  17. Bhargava, R. N. & Nathan, M. I. Stress dependence of photoluminescence in GaAs. Phys. Rev. 161, 695–698 (1967).

    Article  CAS  Google Scholar 

  18. Averkiev, N. S., Gutkin, A. A., Kolchanova, N. M. & Reshchnikov, M. A. Influence of uniaxial deformation on the Mn impurity photoluminescence band of GaAs. Sov. Phys. Semicond. 18, 1019–1021 (1984).

    Google Scholar 

  19. Tang, J.-M., Levy, J. & Flatté, M. E. All-electrical control of single ion spins in a semiconductor. Phys. Rev. Lett. 97, 106803 (2006).

    Article  Google Scholar 

  20. Stangl, J., Holý, V. & Bauer, G. Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725–783 (2004).

    Article  CAS  Google Scholar 

  21. Bruls, D. M. et al. Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 81, 1708–1710 (2002).

    Article  CAS  Google Scholar 

  22. Chilla, E., Rohrbeck, W., Fröhlich, H.-J., Koch, R. & Rieder, K. H. Probing of surface acoustic wave fields by a novel scanning tunneling microscopy technique: Effects of topography. Appl. Phys. Lett. 61, 3107–3109 (1992).

    Article  Google Scholar 

  23. Yang, J. S., Voigt, P. U. & Koch, R. Nanoscale investigation of longitudinal surface acoustic waves. Appl. Phys. Lett. 82, 1866–1868 (2003).

    Article  CAS  Google Scholar 

  24. Koch, R. & Yang, J. S. Nanoscale imaging of surface acoustic waves by scanning tunneling microscopy. J. Appl. Phys. 97, 104321 (2005).

    Article  Google Scholar 

  25. Crooker, S. A. & Smith, D. L. Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields. Phys. Rev. Lett. 94, 236601 (2005).

    Article  CAS  Google Scholar 

  26. Yakunin, A. M. Thesis, Eindhoven Univ. of Technology, The Netherlands (2005).

  27. Averkiev, N. S. & Il’inskii, S. Yu. Spin ordering of carriers localized at two deep centers in cubic semiconductors. Phys. Solid State 36, 278–283 (1994)Fiz. Tverd. Tela 36 503–514 (1994).

    Google Scholar 

  28. Lawaetz, P. Valence-band parameters in cubic semiconductors. Phys. Rev. B 4, 3460–3467 (1971).

    Article  Google Scholar 

  29. Bir, G. L. & Pikus, G. E. Symmetry and Strain-Induced Effects in Semiconductors (Halsted, Jerusalem, 1974).

    Google Scholar 

  30. Tang, J.-M. & Flatté, M. E. Spin-orientation-dependent spatial structure of a magnetic acceptor state in a zinc-blende semiconductor. Phys. Rev. B 72, 161315(R) (2005).

    Article  Google Scholar 

  31. Yakunin, A. M. et al. Imaging of the (Mn2+3d5+hole) complex in GaAs by cross-sectional scanning tunneling microscopy. Physica E 21, 947–950 (2004).

    Article  CAS  Google Scholar 

  32. Chadi, D. J. Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys. Rev. B 16, 790–796 (1977).

    Article  CAS  Google Scholar 

  33. Molinás-Mata, P., Shields, A. J. & Cardona, M. Phonons and internal stresses in IV–IV and III–V semconductors: The planar bond-charge model. Phys. Rev. B 47, 1866–1875 (1993).

    Article  Google Scholar 

  34. Froyen, S. & Harrison, W. A. Elementary prediction of linear combination of atomic orbitals matrix elements. Phys. Rev. B 20, 2420–2422 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Foundation for Fundamental Research on Matter (FOM), NanoNed (a technology programme of the Dutch ministry of Economic Affairs via the foundation STW), the ARO MURI DAAD-19-01-1-0541, NSF Grant No. PHY99-07949, the Belgian Fund for Scientific Research Flanders (FWO) and the EC GROWTH project FENIKS (G5RD-CT-2001-00535) as well as RFBR (05-02-16441), INTAS and the RF Program of Scientific Schools #5596 2006.2 and the Scientific Programs of RAS. The authors would like to thank J. H. Wolter for his important contribution to this research in the early stages. We also thank H. Ohno for comments on the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Yakunin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figues S1-S5 and tables I-IV (PDF 769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakunin, A., Silov, A., Koenraad, P. et al. Warping a single Mn acceptor wavefunction by straining the GaAs host. Nature Mater 6, 512–515 (2007). https://doi.org/10.1038/nmat1936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing