Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Steps on anatase TiO2(101)

Abstract

Surface defects strongly influence the surface chemistry of metal oxides, and a detailed picture of defect structures may help to understand reactivity and overall materials performance in many applications. We report first-principles calculations of step edges, the most common intrinsic defects on surfaces (and probably the predominant ones on nanoparticles). We have determined the structure, energetics, and chemistry of step edges on the (101) surface of TiO2 anatase, an important photocatalytic material. Scanning tunnelling microscopy measurements of step-edge configurations and the contrast in atomically resolved images agree remarkably well with the theoretical predictions. Step-edge formation energies as well as the adsorption energies of water scale with the surface energy of the step facet, a trend that is expected to generally hold for metal oxide surfaces. Depending on the terrace/step configuration, this can lead to a situation where a step is less reactive than the flat terrace.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and morphology of anatase TiO2(101).
Figure 2: Structural models of step edges A–E on anatase (101).
Figure 3: Experimental and simulated STM images of anatase TiO2(101).

Similar content being viewed by others

References

  1. Williams, E. D. Surface steps and surface morphology: understanding macroscopic phenomena from atomic observations. Surf. Sci. 300, 502–524 (1994).

    Article  Google Scholar 

  2. Jeong, H. C. & Williams, E. D. Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34, 175–294 (1999).

    Article  Google Scholar 

  3. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  4. Freund, H. J. Oxide surfaces. Faraday Discuss. 114, 1–31 (1999).

    Article  Google Scholar 

  5. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  Google Scholar 

  6. Pacchioni, G. Physisorbed and chemisorbed CO2 at surface and step sites of the MgO(100) surface. Surf. Sci. 281, 207–219 (1993).

    Article  Google Scholar 

  7. Petitto, S. C., Marsh, E. M. & Langell, M. A. Adsorption of bromobenzene on periodically stepped and nonstepped NiO(100). J. Phys. Chem. B 110, 1309–1318 (2006).

    Article  Google Scholar 

  8. Baumer, M. & Freund, H. J. Metal deposits on well-ordered oxide films. Prog. Surf. Sci. 61, 127–198 (1999).

    Article  Google Scholar 

  9. Chusuei, C. C., Lai, X., Luo, K. & Goodman, D. W. Modeling heterogeneous catalysts: metal clusters on planar oxide supports. Top. Catal. 14, 71–83 (2001).

    Article  Google Scholar 

  10. Henrich, V. E. & Shaikhutdinov, S. K. Atomic geometry of steps on metal-oxide single crystals. Surf. Sci. 574, 306–316 (2005).

    Article  Google Scholar 

  11. Hagfeldt, A. & Gratzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995).

    Article  Google Scholar 

  12. Kavan, L., Gratzel, M., Gilbert, S. E., Klemenz, C. & Scheel, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).

    Article  Google Scholar 

  13. Linsebigler, A. L., Lu, G. Q. & Yates, J. T. Jr. Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  Google Scholar 

  14. Hoffmann, M. R., Martin, S. T., Choi, W. Y. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  Google Scholar 

  15. Diebold, U., Ruzycki, N., Herman, G. S. & Selloni, A. One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal. Today 85, 93–100 (2003).

    Article  Google Scholar 

  16. Shklover, V. et al. Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer. Chem. Mater. 9, 430–439 (1997).

    Article  Google Scholar 

  17. Bikondoa, O. et al. Direct visualization of defect-mediated dissociation of water on TiO2(110) . Nature Mater. 5, 189–192 (2006).

    Article  Google Scholar 

  18. Hebenstreit, W., Ruzycki, N., Herman, G. S., Gao, Y. & Diebold, U. Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys. Rev. B 62, R16334–R16336 (2000).

    Article  Google Scholar 

  19. Herman, G. S., Dohnalek, Z., Ruzycki, N. & Diebold, U. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101) . J. Phys. Chem. B 107, 2788–2795 (2003).

    Article  Google Scholar 

  20. Liang, Y., Gan, S., Chambers, S. A. & Altman, E. I. Surface structure of anatase TiO2(001): reconstruction, atomic steps and domains. Phys. Rev. B 63, 235402 (2001).

    Article  Google Scholar 

  21. Thomas, G. A. et al. Resonant photoemission of anatase TiO2(101) and (001) single crystals. Phys. Rev. B 67, 035110 (2003).

    Article  Google Scholar 

  22. Ranade, M. R. et al. Energetics of nanocrystalline TiO2 . Proc. Natl Acad. Sci. USA 99, 6476–6481 (2002).

    Article  Google Scholar 

  23. Noguera, C. Polar oxide surfaces. J. Phys. Condens. Matter 12, R367–R410 (2000).

    Article  Google Scholar 

  24. Yu, B. D. & Scheffler, M. Ab initio study of step formation and self-diffusion ion Ag(100). Phys. Rev. B 55, 13916–13924 (1997).

    Article  Google Scholar 

  25. Kern, G. & Hafner, J. Ab initio calculations of the atomic and electronic structure of diamond (111) surfaces with steps. Phys. Rev. B 58, 2161–2169 (1998).

    Article  Google Scholar 

  26. Zhang, X. D. & Demkov, A. A. Steps on the (001) SrTiO3 surface. J. Vac. Sci. Technol. B 20, 1664–1670 (2002).

    Article  Google Scholar 

  27. Feibelman, P. J. Ab initio step and kink formation energies on Pb(111). Phys. Rev. B 62, 17020–17025 (2000).

    Article  Google Scholar 

  28. Goniakowski, J. & Noguera, C. Atomic and electronic-structure of steps and kinks on MgO(100) and MgO(110). Surf. Sci. 340, 191–204 (1995).

    Article  Google Scholar 

  29. Hecquet, P. & Salanon, B. Step interactions and surface stability for Cu vicinals. Surf. Sci. 366, 415–431 (1996).

    Article  Google Scholar 

  30. Frenken, J. W. M. & Stoltze, P. Are vicinal metal surfaces stable? Phys. Rev. Lett. 82, 3500–3503 (1999).

    Article  Google Scholar 

  31. Raouafi, F., Barreteau, C., Desjonqueres, M. C. & Spanjaard, D. Energetics of stepped and kinked surfaces of Rh, Pd and Cu from electronic structure calculations. Surf. Sci. 505, 183–199 (2002).

    Article  Google Scholar 

  32. Barreteau, C., Raouafi, F., Desjonqueres, M. C. & Spanjaard, D. Modelling of transition and noble metal vicinal surfaces: energetics, vibrations and stability. J. Phys. Condens. Matter 15, S3171–S3196 (2003).

    Article  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  34. Baroni, S., De Gironcoli, S., Dal Corso, A. & Giannozzi, P. (http://www.democritos.it).

  35. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  Google Scholar 

  36. Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).

    Article  Google Scholar 

  37. Vittadini, A., Selloni, A., Rotzinger, F. P. & Gratzel, M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81, 2954–2957 (1998).

    Article  Google Scholar 

  38. Tilocca, A. & Selloni, A. Vertical and lateral order in adsorbed water layers on anatase TiO2(101) . Langmuir 20, 8379–8384 (2004).

    Article  Google Scholar 

  39. Arrouvel, C., Digne, M., Breysse, M., Toulhoat, H. & Raybaud, P. Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase-TiO2 and gamma-alumina catalytic supports. J. Catal. 222, 152–166 (2004).

    Article  Google Scholar 

  40. Gong, X.-Q. & Selloni, A. Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J. Phys. Chem. B 109, 19560–19562 (2005).

    Article  Google Scholar 

  41. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  Google Scholar 

  42. Lazzeri, M., Vittadini, A. & Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63, 155409 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Energy Office of Science for financial support (DE-FG02-05ER15702), and the Pittsburgh Supercomputer Center and the Keck Computational Materials Science Laboratory in Princeton for computing time. We also thank E. Tosatti for a useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Annabella Selloni or Ulrike Diebold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, XQ., Selloni, A., Batzill, M. et al. Steps on anatase TiO2(101) . Nature Mater 5, 665–670 (2006). https://doi.org/10.1038/nmat1695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing