Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronically coupled complementary interfaces between perovskite band insulators

Abstract

Perovskite oxides exhibit a plethora of exceptional properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. For device applications, as well as for a basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely spaced complementary interfaces. Here we report the successful realization of such coupled interfaces in SrTiO3–LaAlO3 thin-film multilayer structures. We found a critical separation distance of six perovskite unit cell layers, corresponding to approximately 23 Å, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate conducting interfaces are found to be maintained in coupled structures down to subnanometre interface spacing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the LaAlO3/SrTiO3 heterostructures investigated.
Figure 2: Quantitative scanning transmission electron microscopy analysis of the atomic stacking sequences at the interfaces.
Figure 3: Electronic properties of the LaAlO3/SrTiO3 heterostructures at 300 K for different separation distances between the interfaces.
Figure 4: Transport properties of the LaAlO3/SrTiO3 heterostructures for different separation distances between the interfaces.

Similar content being viewed by others

References

  1. Ahn, C. H., Triscone, J. M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  Google Scholar 

  2. Dagotto, E. Complexity in strongly correlated electron systems. Science 309, 257–262 (2005).

    Article  Google Scholar 

  3. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  Google Scholar 

  4. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  Google Scholar 

  5. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    Article  Google Scholar 

  6. Rijnders, G. J. H. M., Koster, G., Blank, D. H. A. & Rogalla, H. In situ monitoring during pulsed laser deposition of complex oxides using reflection high-energy electron diffraction under high oxygen pressure. Appl. Phys. Lett. 70, 1888–1890 (1997).

    Article  Google Scholar 

  7. Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).

    Article  Google Scholar 

  8. Koster, G., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Imposed layer-by-layer growth by pulsed laser interval deposition. Appl. Phys. Lett. 74, 3729–3731 (1999).

    Article  Google Scholar 

  9. Den Dekker, A. J., Van Aert, S., Van den Bos, A. & Van Dyck, D. Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part I: A theoretical framework. Ultramicroscopy 104, 83–106 (2005).

    Article  Google Scholar 

  10. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

    Article  Google Scholar 

  11. Kalabukhov, A. S. et al. The role of oxygen vacancies in SrTiO3 at the LaAlO3/SrTiO3 interface. Preprint at <http://arxiv.org/abs/cond-mat/0603501> (2006).

  12. Siemons, W. et al. Origin of the unusual transport properties observed at hetero-interfaces of LaAlO3 on SrTiO3. Preprint at <http://arxiv.org/abs/cond-mat/0603598> (2006).

  13. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    Article  Google Scholar 

  14. Okamoto, S. & Millis, A. J. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004).

    Article  Google Scholar 

  15. Okamoto, S. & Millis, A. J. Theory of Mott insulator-band insulator heterostructures. Phys. Rev. B 70, 075101 (2004).

    Article  Google Scholar 

  16. Okuda, T., Nakanishi, K., Miyasaka, S. & Tokura, Y. Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0≤x≤0.1) . Phys. Rev. B 63, 113104 (2001).

    Article  Google Scholar 

  17. Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Surface defects and the electronic structure of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1987).

    Article  Google Scholar 

  18. Nishimura, J., Ohtomo, A., Ohkubo, A., Murakami, Y. & Kawasaki, M. Controlled carrier generation at a polarity-discontinued perovskite heterointerface. Jpn J. Appl. Phys. 43, L1032–L1034 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM, financially supported by the Netherlands Organisation for Scientific Research (NWO)) and Philips Research. A.B., D.H.A.B., H.H. and G.R. acknowledge additional support from NWO. S.B. and S.V.A. are grateful to the Fund for Scientific Research-Flanders. The authors also acknowledge B. Freitag, A. J. Millis, Y. Ponomarev, F. J. G. Roesthuis, H. Rogalla, R. Wolters, W. van der Wiel, D. Veldhuis and the FEI Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave H. A. Blank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huijben, M., Rijnders, G., Blank, D. et al. Electronically coupled complementary interfaces between perovskite band insulators. Nature Mater 5, 556–560 (2006). https://doi.org/10.1038/nmat1675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing