Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metallotropic liquid crystals formed by surfactant templating of molten metal halides

Abstract

Liquid crystals consist of anisotropic molecular units, and most are organic molecules. Materials incorporating metals into anisotropic molecules, described as metallomesogens, have been prepared1. Anisotropic structures such as one-dimensional chains and two-dimensional layers are frequently observed in solid-state inorganic materials, however, little is understood about structural organization in melts of such materials. Achieving liquid-crystalline behaviour in inorganic fluids should be possible if the anisotropic structure can be retained or designed into the molten phase. We demonstrated the ability to engineer zeolite-type structures into metal halide glasses and liquids2,3. In this work we have engineered lamellar, cubic and hexagonal liquid-crystalline structure in metal-halide melts by controlling the volume fraction and nature of the inorganic block (up to 80 mol%) with respect to alkylammonium surfactants. The high metal content of these liquid-crystalline systems significantly advances the field of metallomesogens, which seeks to combine magnetic, electronic, optical, redox and catalytic properties common to inorganic materials with the fluid properties of liquid crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagrams for CnTACl /MCl2 (n=12 and 16, M=Zn,Cu,Cd).
Figure 2: Polarized optical microscopy of representative liquid-crystalline textures.
Figure 3: Crystal structure drawings.
Figure 4: Plots of the variation in the liquid-crystal lattice spacing as a function of the mol% of inorganic metal halide.

Similar content being viewed by others

References

  1. Donnio, B., Guillon, D., Seschenaux, R. & Bruce, D. W. Metallomesogens. Comp. Coord. Chem. II 7, 357–627 (2004).

    Google Scholar 

  2. Martin, J. D., Goettler, S. J., Fosse, N. & Iton, L. Designing intermediate range order in amorphous materials. Nature 419, 381–384 (2002).

    Article  Google Scholar 

  3. Martin, J. D. & Thornton, T. A. Liquid crystalline zinc chloride. in Liquid Crystal Materials and Devices (ed. Bunning, T. J.) Proc. Mater. Res. Soc. 559, 243–248 (1999).

    Article  Google Scholar 

  4. Zocher, H. Occurrence of liquid crystallinity in a borazine polymer. Z. Anorg. Allg. Chem. 147, 91–111 (1925).

    Article  Google Scholar 

  5. Sonin, A. S. Inorganic lyotropic liquid crystals. J. Mater. Chem. 8, 2557–2574 (1998).

    Article  Google Scholar 

  6. Gabriel, J.-C. P. & Davidson, P. New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater. 12, 9–20 (2000).

    Article  Google Scholar 

  7. Li, L. S., Walda, J., Manna, L. & Alivisaos, A. P. Semiconductor nanorod liquid crystals. Nano Lett. 6, 557–560 (2002).

    Article  Google Scholar 

  8. Kim, D.-P. & Economy, J. Occurrence of liquid crystallinity in a borazine polymer. Chem. Mater. 6, 395–400 (1994).

    Article  Google Scholar 

  9. Jiang, T. & Ozin, G. A. Tin(IV) sulfide-alkylamine composite mesophase: a new class of thermotropic liquid crystals. J. Mater. Chem. 7, 2213–2222 (1997).

    Article  Google Scholar 

  10. Firouzi, A., Atef, F., Oertli, A. G., Stucky, G. D. & Chmelka, B. F. Alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc. 119, 3596–3610 (1997).

    Article  Google Scholar 

  11. Skoulios, A. & Luzzati, V. Structure of anhydrous sodium soaps at high temperatures. Nature 183, 1310–1312 (1959).

    Article  Google Scholar 

  12. Neve, F. Transition metal based ionic mesogens. Adv. Mater. 8, 277–289 (1996).

    Article  Google Scholar 

  13. Bowlas, C. J., Bruce, D. W. & Seddon, K. R. Liquid-crystalline ionic liquids. Chem. Commun. 1625–1626 (1996).

  14. Spegt, P. A. & Skoulios, A. E. Structure des savons de strontium en fonction de la température. Acta Crystallogr. 21, 892–897 (1966).

    Article  Google Scholar 

  15. Baena, M. J., Espinet, P., Lequerica, M. C. & Levelut, A. M. Mesogenic behavior of silver thiolates with layered structure in the solid state: covalent soaps. J. Am. Chem. Soc. 114, 4182–4185 (1992).

    Article  Google Scholar 

  16. Busico, V., Castaldo, D. & Vacatello, M. Thermal behavior and liquid crystalline phases of a series of bis(n-alkylammonium)tetrabromozincates. Mol. Cryst. Liq. Cryst. 78, 221–226 (1981).

    Article  Google Scholar 

  17. Neve, F., Crispini, A., Armentano, S. & Francesangeli, O. Synthesis, structure and thermotropic mesomorphism of layered n-alkylpyridinium tetrahalopalladate(II) salts. Chem. Mater. 10, 1904–1913 (1998).

    Article  Google Scholar 

  18. Kanazawa, A., Ikeda, T. & Nagase, Y. Novel class of ionic metallomesogens without organic ligands: thermotropic liquid-crystalline behavior of tetrachlorometalate salts and distinct polymorphic transition in smectic A phases. Chem. Mater. 12, 3776–3782 (2000).

    Article  Google Scholar 

  19. Lee, C. K., Peng, H. H. & Lin, I. J. B. Liquid crystals of n,n-dialkylimidazolium salts comprising palladium(II) and copper(II) ions. Chem. Mater. 16, 530–536 (2004).

    Article  Google Scholar 

  20. Gordon, C. M., Holbrey, J. D., Kennedy, A. R. & Seddon, K. R. Ionic liquid crystals: hexafluorophosphate salts. J. Mater. Chem. 8, 2627–2636 (1998).

    Article  Google Scholar 

  21. Neve, F., Crispini, A. & Francescangeli, O. Structural studies on layered alkylpyridinium iodopalladate networks. Inorg. Chem. 39, 1187–1194 (2000).

    Article  Google Scholar 

  22. Fosse, N., Caldes, M., Joubert, O., Ganne, M. & Brohan, L. Layered alkyltrimethylammonium chromates: thermal and structural investigations and crystal structure of anhydrous bisoctyltrimethylammonium dichromate. J. Solid State Chem. 139, 310–320 (1998).

    Article  Google Scholar 

  23. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  Google Scholar 

  24. Palmqvist, A. E. C. Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr. Opin. Colloid Interface Sci. 8, 145–155 (2003).

    Article  Google Scholar 

  25. Tschierske, C. Non-conventional liquid crystals—the importance of micro-segregation for self-organization. J. Mater. Chem. 8, 1485–1509 (1998).

    Article  Google Scholar 

  26. Bruce, D. W. Calamitics, cubics, and columnars—liquid-crystalline complexes of silver(I). Acc. Chem. Res. 33, 831–840 (2000).

    Article  Google Scholar 

  27. Desa, J. A. E., Wright, A. C., Wong, J. & Sinclair, R. N. A neutron diffraction investigation of the structure of vitreous zinc chloride. J. Non-Cryst. Solids 51, 57–86 (1982).

    Article  Google Scholar 

  28. Beggin, S. & Enderby, J. E. The structure of molten zinc chloride. J. Phys. C 14, 3129–3136 (1981).

    Article  Google Scholar 

  29. Barón, M. Definitions of basic terms relating to low-molar-mass and polymer liquid crystals (IUPAC Recommendations 2001). Pure Appl. Chem. 73, 845–895 (2001).

    Article  Google Scholar 

  30. Demus, D. & Richter, L. Textures of Liquid Crystals (Verlag Chemie, Weinheim, GDR, 1978).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (DMR-9501370, DMR-0072828 and DMR-0305086), and general user time on beam line X7b at BNL NSLS supported by contract DE-AC02-98CH10086 with the US DOE Office of Basic Energy Sciences division of chemical sciences. J.D.M. is a Cottrell Scholar of the Research Corporation. The assistance of X7B beamline scientist J. Hanson is gratefully acknowledged. P. Boyle, S. Parkin and C. Day contributed to single-crystal X-ray data collection. NSF-REU students J. L. Brown and J. M. Duerk, ACS Project SEED student S. Townes and J.D.M.’s daughter E. L. Martin all contributed to this work. This work is in part the subject matter of US Patents 6,540,939 and 6,790,382 B2 ‘Templated Compositions of Inorganic Liquids and Glasses’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Martin.

Ethics declarations

Competing interests

The subject matter is related to US patents, as stated in the Acknowledgements.

Supplementary information

Supplementary information

Discussion on nomenclature (PDF 43 kb)

Supplementary information

Indexing of the diffraction of the bicontinuous cubic phases (PDF 36 kb)

Supplementary information

C8TAZnCl33 (PDF 80 kb)

Supplementary information

C12TAZnCl50 (PDF 54 kb)

Supplementary information

C12ZnCl_XRDDSC (PDF 114 kb)

Supplementary information

C16CdCl_XRDDSC (PDF 129 kb)

Supplementary information

C16CuCl_XRDDSC (PDF 147 kb)

Supplementary information

C16TACaCuCl50 (PDF 69 kb)

Supplementary information

C16TACdCl50 (PDF 70 kb)

Supplementary information

C16TACuCl25 (PDF 83 kb)

Supplementary information

C16TAZnCl33 (PDF 67 kb)

Supplementary information

C16TAZnCl50 (PDF 51 kb)

Supplementary information

C16ZnCl_XRDDSC (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J., Keary, C., Thornton, T. et al. Metallotropic liquid crystals formed by surfactant templating of molten metal halides. Nature Mater 5, 271–275 (2006). https://doi.org/10.1038/nmat1610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing