Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Processing of giant graphene molecules by soft-landing mass spectrometry

Abstract

The processability of giant (macro)molecules into ultrapure and highly ordered structures at surfaces is of fundamental importance for studying chemical, physical and biological phenomena, as well as their exploitation as active units in the fabrication of hybrid devices1,2. The possibility of handling larger and larger molecules provides access to increasingly complex functions3,4,5,6. Unfortunately, larger molecules commonly imply lower processability due to either their low solubility in liquid media or the occurrence of thermal cracking during vacuum sublimation. The search for novel strategies to process and characterize giant building blocks is therefore a crucial goal in materials science. Here we describe a new general route to process, at surfaces, extraordinarily large molecules, that is, synthetic nanographenes7, into ultrapure crystalline architectures. Our method relies on the soft-landing of ions8 generated by solvent-free matrix-assisted laser desorption/ionization (MALDI). The nanographenes are transferred to the gas phase, purified and adsorbed at surfaces. Scanning tunnelling microscopy reveals the formation of ordered nanoscale semiconducting supramolecular architectures. The unique flexibility of this approach allows the growth of ultrapure crystalline films of various systems, including organic, inorganic and biological molecules, and therefore it can be of interest for technological applications in the fields of electronics, (bio)catalysis and nanomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup and model compounds.
Figure 2: Molecular adlayer soft-landed on HOPG.
Figure 3: Schematic diagram of the packing of C42H18.

Similar content being viewed by others

References

  1. Alivisatos, A. P. et al. From molecules to materials: Current trends and future directions. Adv. Mater. 10, 1297–1336 (1998).

    Article  Google Scholar 

  2. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    Article  Google Scholar 

  3. Supramolecular chemistry and self-assembly. Science 295 (special issue) 2395–2421 (2002).

  4. Martin, R. E., Mader, T. & Diederich, F. Monodisperse poly(triacetylene) rods: Synthesis of a 11.9 nm long molecular wire and direct determination of the effective conjugation length by UV/Vis and Raman spectroscopies. Angew. Chem. Int. Edn 38, 817–821 (1999).

    Article  Google Scholar 

  5. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Edn 39, 3349–3391 (2000).

    Google Scholar 

  6. Van der Auweraer, M. & De Schryver, F. C. Organic electronics: Supra solutions. Nature Mater. 3, 507–508 (2004).

    Article  Google Scholar 

  7. Watson, M. D., Fechtenkötter, A. & Müllen, K. Big is beautiful—“Aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

    Article  Google Scholar 

  8. Franchetti, V., Solka, B. H., Baitinger, W. E., Amy, J. W. & Cooks, R. G. Soft landing of ions as a means of surface modification. Int. J. Mass. Spectrom. Ion. Phys. 23, 29–35 (1977).

    Article  Google Scholar 

  9. Tsekouras, A. A., Iedema, M. J. & Cowin, J. P. Soft-landed ion diffusion studies on vapor-deposited hydrocarbon films. J. Chem. Phys. 111, 2222–2234 (1999).

    Article  Google Scholar 

  10. Ouyang, Z. et al. Preparing protein microarrays by soft-landing of mass-selected ions. Science 301, 1351–1354 (2003).

    Article  Google Scholar 

  11. Feng, B. B., Wunschel, D. S., Masselon, C. D., Pasa-Tolic, L. & Smith, R. D. Retrieval of DNA using soft-landing after mass analysis by ESI-FTICR for enzymatic manipulation. J. Am. Chem. Soc. 121, 8961–8962 (1999).

    Article  Google Scholar 

  12. Gologan, B. et al. Ion soft-landing into liquids: Protein identification, separation and purification with retention of biological activity. J. Am. Soc. Mass Spectrom. 15, 1874–1884 (2004).

    Article  Google Scholar 

  13. Miller, S. A., Luo, H., Pachuta, S. J. & Cooks, R. G. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 275, 1447–1450 (1997).

    Article  Google Scholar 

  14. Schriemer, D. C. & Li, L. Detection of high molecular weight narrow polydisperse polymers up to 1.5 million Daltons by MALDI mass spectrometry. Anal. Chem. 68, 2721–2725 (1996).

    Article  Google Scholar 

  15. Gologan, B., Green, J. R., Alvarez, J., Laskin, J. & Cooks, R. G. Ion/surface reactions and ion soft-landing. Phys. Chem. Chem. Phys. 7, 1490–1500 (2005).

    Article  Google Scholar 

  16. Trimpin, S., Rouhanipour, A., Az, R., Räder, H. J. & Müllen, K. Rapid Commun. Mass Spectrom. 15, 1364–1373 (2001).

    Article  Google Scholar 

  17. Przybilla, L., Brand, J. D., Yoshimura, K., Räder, H. J. & Müllen, K. MALDI-TOF mass spectrometry of insoluble giant polycyclic aromatic hydrocarbons by a new method of sample preparation. Anal. Chem. 72, 4591–4597 (2000).

    Article  Google Scholar 

  18. Jurchescu, O. D., Baas, J. & Palstra, T. T. M. Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061–3063 (2004).

    Article  Google Scholar 

  19. Samorì, P., Severin, N., Simpson, C. D., Müllen, K. & Rabe, J. P. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 124, 9454–9457 (2002).

    Article  Google Scholar 

  20. Schmitz-Hübsch, T. et al. Direct observation of organic-organic heteroepitaxy: perylene-tetracarboxylic-dianhydride on hexa-peri-benzocoronene on highly ordered pyrolytic graphite. Surf. Sci. 445, 358–367 (2000).

    Article  Google Scholar 

  21. van de Craats, A. M. & Warman, J. M. The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater. 13, 130–133 (2001).

    Article  Google Scholar 

  22. Brédas, J. L., Calbert, J. P., da Silva, D. A. & Cornil, J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

    Article  Google Scholar 

  23. Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).

    Article  Google Scholar 

  24. Cousty, J. & Van, L. P. Formation of partially demixed two-dimensional solid solutions from binary mixtures of n-alkanes with very different lengths. Phys. Chem. Chem. Phys. 5, 599–603 (2003).

    Article  Google Scholar 

  25. Goddard, R., Haenel, M. W., Herndon, W. C., Kruger, C. & Zander, M. Crystallization of large planar polycyclic aromatic-hydrocarbons—the molecular and crystal-structures of hexabenzo[bc, ef, hi, kl, no, qr]coronene and benzo[1,2,3-bc/4,5,6-bc′ ]dicoronene. J. Am. Chem. Soc. 117, 30–41 (1995).

    Article  Google Scholar 

  26. Samorì, P. et al. Self-assembly and manipulation of crown ether phthalocyanines at the gel-graphite interface. Angew. Chem. Int. Edn 40, 2348–2350 (2001).

    Article  Google Scholar 

  27. Samorì, P. et al. Growth of ordered hexakis-dodecyl-hexabenzoeoronene layers from solution: A SFM and ARUPS study. J. Phys. Chem. B 105, 11114–11119 (2001).

    Article  Google Scholar 

  28. Friedlein, R. et al. Electronic structure of highly ordered films of self-assembled graphitic nanocolumns. Phys. Rev. B 68, 195414 (2003).

    Article  Google Scholar 

  29. Pisula, W. et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-haxabenzocoronene. Adv. Mater. 17, 684–689 (2005).

    Article  Google Scholar 

  30. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  Google Scholar 

  31. Kaleta, D. T. & Jarrold, M. F. Helix-turn-helix motifs in unsolvated peptides. J. Am. Chem. Soc. 125, 7186–7187 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Jung for enlightening discussions and D. Jones for his comments on the manuscript. We acknowledge financial support from ESF-SONS-BIONICS, the EU through the Marie Curie EST-SUPER (MEST-CT-2004-008128) and the IP-NAIMO (NMP4-CT-2004-500355), as well as Emilia Romagna-Consorzio Spinner (TT-NANOSMILE grant).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Joachim Räder, Paolo Samorì or Klaus Müllen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information and figures S1, S2 (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Räder, H., Rouhanipour, A., Talarico, A. et al. Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Mater 5, 276–280 (2006). https://doi.org/10.1038/nmat1597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing