Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optofluidic control using photothermal nanoparticles

Abstract

Photothermal metallic nanoparticles have attracted significant attention owing to their energy-conversion properties1,2,3,4. Here, we introduce an optofluidic application based on a direct optical-to-hydrodynamic energy conversion using suspended photothermal nanoparticles near the liquid–air interface. Using light beams with submilliwatt power, we can drive and guide liquid flow in microfluidic channels to transport biomolecules and living cells at controlled speeds and directions. Previously, a variety of methods for controlling microscale liquid flow have been developed owing to the increasing interest for microfluidics-based biochemical analysis systems5. However, our method dispenses with the need for complex pump and valve devices6,7,8, surface chemistry9,10 and electrode patterning11,12,13,14, or any other further effort towards substrate fabrication15,16. Instead, our optofluidic control method will allow the fabrication of all-optical large-scale integrated microfluidic circuits for biomolecular and cellular processing without any physical valve or mechanical pumping device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PNP-activated optofluidic flow.
Figure 2: Optofluidic control in straight microfluidic channels.
Figure 3: Maximal flow speed by optofluidic control.
Figure 4: Optofluidic control at two adjacent T-shaped channel junctions.

Similar content being viewed by others

References

  1. Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    Article  Google Scholar 

  2. Cognet, L. et al. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl Acad. Sci. USA 100, 11350–11355 (2003).

    Article  Google Scholar 

  3. Kato, H., Nishizaka, T., Iga, T., Kazuhiko, K. Jr & Ishiwata, S. Imaging of thermal activation of actomyosin motors. Proc. Natl Acad. Sci. USA 96, 9602–9606 (1999).

    Article  Google Scholar 

  4. Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl. Phys. Lett. 80, 4609–4611 (2002).

    Article  Google Scholar 

  5. Meldrum, D. R. & Holl, M. R. Microscale bioanalytical systems. Science 297, 1197–1198 (2002).

    Article  Google Scholar 

  6. Ho, C. H. & Tai, Y. C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998).

    Article  Google Scholar 

  7. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2002).

    Article  Google Scholar 

  8. Neale, S. L., Macdonald, M. P., Dholakia, K. & Krauss, T. F. All-optical control of microfluidic components using form birefringence. Nature Mater. 4, 530–533 (2005).

    Article  Google Scholar 

  9. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  Google Scholar 

  10. Kataoka, D. E. & Troian, S. M. Patterning liquid flow on the microscopic scale. Nature 402, 794–797 (1999).

    Article  Google Scholar 

  11. Harrison, D. J. et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897 (1993).

    Article  Google Scholar 

  12. Burns, M. A. et al. Microfabricated structures for integrated DNA analysis. Proc. Natl Acad. Sci. USA 93, 5556–5561 (1996).

    Article  Google Scholar 

  13. Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–60 (1999).

    Article  Google Scholar 

  14. Lee, J., Moon, H., Fowler, J., Schoellhammer, T. & Kim, C.-J. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators A 95, 259–268 (2002).

    Article  Google Scholar 

  15. Ichimura, K., Oh, S.-K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  Google Scholar 

  16. Chiou, P. Y., Moon, H., Toshiyoshi, H., Kim, C.-J. & Wu, M. C. Light actuation of liquid by optoelectrowetting. Sensors Acutators A 104, 222–228 (2003).

    Article  Google Scholar 

  17. Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).

    Article  Google Scholar 

  18. Chou, C.-H., Chen, C.-D. & Wang, C. R. C. Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors. J. Phys. Chem. B 109, 11135–11138 (2005).

    Article  Google Scholar 

  19. Chen, J. et al. Gold nanocages: Engineering the structure for biomedical applications. Adv. Mater. 17, 2255–2261 (2005).

    Article  Google Scholar 

  20. Love, J. C., Gates, B. D., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2, 891–894 (2002).

    Article  Google Scholar 

  21. Kam, N. W. S., O’Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  Google Scholar 

  22. Edwards, D., Brenner, H. & Wasan, D. Interfacial Transport Processes and Rheology (Bufferworth-Heinemann, Boston, 1991).

    Google Scholar 

  23. Farahi, R. H., Passian, A., Ferrell, T. L. & Thundat, T. Marangoni forces created by surface plasmon decay. Opt. Lett. 30, 616–618 (2005).

    Article  Google Scholar 

  24. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  Google Scholar 

  25. Daniel, S., Chaudhury, M. K. & Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  Google Scholar 

  26. Croonen, Y. et al. Influence of salt, detergent concentration, and temperature on the fluorescence quenching of 1-methylpyrene in sodium dodecyl-sulfate with meta-dicyanobenzene. J. Phys. Chem. 87, 1426–1431 (1983).

    Article  Google Scholar 

  27. Xia, Y. N. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Edn Engl. 37, 551–575 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Defense Science Office of the Defense Advanced Research Projects Agency, USA. J.K. was supported by a grant (05K1501-02810) from the Center for Nanostructured Materials Technology under the 21st Century Frontier R&D Programs of the Ministry of Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke P. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1-S5 and movie legends (PDF 291 kb)

Supplementary movie S1

Supplementary movie S1 (AVI 769 kb)

Supplementary movie S2

Supplementary movie S2 (AVI 3694 kb)

Supplementary movie S3

Supplementary movie S3 (AVI 3306 kb)

Supplementary movie S4

Supplementary movie S4 (AVI 1338 kb)

Supplementary movie S5

Supplementary movie S5 (AVI 1879 kb)

Supplementary movie S6

Supplementary movie S6 (AVI 2125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Kim, J., Lu, Y. et al. Optofluidic control using photothermal nanoparticles. Nature Mater 5, 27–32 (2006). https://doi.org/10.1038/nmat1528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing