Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anharmonic motions of Kr in the clathrate hydrate

Abstract

The anomalous glass-like thermal conductivity of crystalline clathrates has been suggested to be the result of the scattering of thermal phonons of the framework by ‘rattling’ motions of the guests in the clathrate cages. Using the site-specific 83Kr nuclear resonant inelastic scattering spectroscopy in combination with conventional incoherent inelastic neutron scattering and molecular-dynamics simulations, we provide unambiguous evidence and characterization of the effects on these guest–host interactions in a structure-II Kr clathrate hydrate. The resonant scattering of phonons led to unprecedented large anharmonic motions of the guest atoms. The anharmonic interaction underlies the anomalous thermal transport in this system. Clathrates are prototypical models for a class of crystalline framework materials with glass-like thermal conductivity. The explanation of the unusual molecular dynamics has a wide implication for the understanding of the thermal properties of disordered solids and structural glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IINS spectra of Kr clathrate hydrate.
Figure 2: Experimental NRIXS spectra and the derived ‘phonon density of states’ (see text) for Kr clathrate hydrate.
Figure 3: A comparison of the experimental and theoretical intermediate scattering functions S(ω).

Similar content being viewed by others

References

  1. Keppens, V. et al. Localized vibrational modes in metallic solids. Nature 395, 876–878 (1998).

    Article  Google Scholar 

  2. Slack, G. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) (CRC, Boca Raton, 1995).

    Google Scholar 

  3. Tse, J. S. Dynamical properties and stability of clathrate hydrates. Ann. NY Acad. Sci. 715, 187–206 (1994).

    Article  Google Scholar 

  4. Slack, G. Design concepts for improved thermoelectric materials. Mater. Res. Soc. Symp. Proc. 478, 47–54 (1997).

    Article  Google Scholar 

  5. Tse, J. S. & White, M. A. The origin of the glassy crystalline behaviour in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate. J. Phys. Chem. 92, 5006 (1988).

    Article  Google Scholar 

  6. Tse, J. S. et al. Structural principles and amorphous like thermal conductivity of Na-doped Si clathrates. Phys. Rev. Lett. 85, 114–117 (2000).

    Article  Google Scholar 

  7. Nolas, G. S. et al. Thermal conductivity of elemental crystalline silicon clathrate Si136 . Appl. Phys. Lett. 82, 910 (2003).

    Article  Google Scholar 

  8. Murashov, V. V. & White, M. A. Thermal properties of zeolites: effective thermal conductivity of dehydrated powdered zeolite 4A. Mater. Chem. Phys. 75, 178–180 (2002).

    Article  Google Scholar 

  9. Feldman, J. L., Singh, D. J., Mazin, I. I., Mandrus, D. & Sales, B. C. Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev. B 61, R9209–R9212 (2000).

    Article  Google Scholar 

  10. Andersson, O., Murashov, V. & White, M. A. Thermal conductivity and heat capacity of Dianin’s clathrates under pressure. J. Phys. Chem. B 106, 192–196 (2002).

    Article  Google Scholar 

  11. Johari, G. P. Low-energy exitations of guest molecules in clathrates and the boson peak. Chem. Phys. 287, 273 (2003).

    Article  Google Scholar 

  12. Blake, N. P., Mollnitz, L., Kress, G. & Metiu, H. Why clathrates are good thermoelectrics: A theoretical study of Sr8Ga16Ge30 . J. Chem. Phys. 111, 3133–3144 (1999).

    Article  Google Scholar 

  13. Nolas, G. S., Cohn, J. L., Slack, G. L. & Schujman, S. B. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178–180 (1999).

    Article  Google Scholar 

  14. Sloan, E. D. Clathrate Hydrates of Natural Gases (Decker, New York, 1998).

    Google Scholar 

  15. Ripmeester, J. A., Ratcliffe, C. I., Klug, D. D. & Tse, J. S. Molecular perspectives on structure and dynamics in clathrates hydrates. Ann. NY Acad. Sci. 715, 161–176 (1994).

    Article  Google Scholar 

  16. Loveday, J. S. et al. Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric methane. Nature 410, 661–663 (2001).

    Article  Google Scholar 

  17. Tse, J. S. et al. Coupling of localized guest vibrations with the lattice modes in clathrate hydrates. Europhys. Lett. 54, 354–356 (2001).

    Article  Google Scholar 

  18. Inoue, R., Tanaka, H. & Nakanishi, K. Molecular dynamics simulation study of the anomalous thermal conductivity of clathrate hydrates. J. Chem. Phys. 104, 9569–9577 (1996).

    Article  Google Scholar 

  19. Andersson, O. & Suga, H. Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates. J. Phys. Chem. Solids 57, 125–132 (1996).

    Article  Google Scholar 

  20. Baumert, J. et al. Lattice dynamics of methane and xenon hydrate: Observation of symmetry-avoided crossing by experiment and theory. Phys. Rev. B 68, 174301 (2003).

    Article  Google Scholar 

  21. Nolas, S., Fessatidis, V., Metcalf, T. H. & Slack, G. A. Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779–782 (1999).

    Article  Google Scholar 

  22. Sturhahn, W. et al. Phonon density of states measured by inelastic nuclear resonant scattering. Phys. Rev. Lett. 74, 3832–3835 (1995).

    Article  Google Scholar 

  23. Zhao, J., Toellner, T. S., Hu, M. H., Sturhahn, W. & Alp, E. E. High-energy-resolution monochromator for 83Kr nuclear resonant scattering. Rev. Sci. Instrum. 73, 1608–1610 (2002).

    Article  Google Scholar 

  24. Handa, Y. P. Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J. Chem. Thermodyn. 18, 891–902 (1986).

    Article  Google Scholar 

  25. Gutt, C., Baumert, J., Press, W., Tse, J. S. & Janssen, S. The vibrational properties of xenon hydrate: An inelastic incoherent neutron scattering study. J. Chem. Phys. 116, 3795–3799 (2002).

    Article  Google Scholar 

  26. Sturhahn, W. CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interactions 125, 149–172 (2000).

    Article  Google Scholar 

  27. Hansen, J. P. & McDonald, I. R. Theory of Simple Liquids (Academic, London, 1986).

    Google Scholar 

  28. Tse, J. S. & Klein, M. L. Dynamical properties of the structure II hydrate of krypton. J. Phys. Chem. 91, 5789–5792 (1987).

    Article  Google Scholar 

  29. Sturhahn, W. & Kohn, V. G. Theoretical aspects of incoherent nuclear resonant scattering. Hyperfine Interactions 123/124, 367–399 (1999).

    Article  Google Scholar 

  30. Tse, J. S., Ratcliffe, C. I., Powell, B. M., Sears, V. & Handa, Y. P. Rotational and translational motions of trapped methane. Incoherent and inelastic neutron scattering of methane hydrate. J. Phys. Chem. A 101, 4491–4495 (1997).

    Article  Google Scholar 

  31. Krivchikov, A. I., Manzhelii, V. G., Korolyuk, O. A., Gorodilov, B. Ya. & Romantsova, O. O. Thermal conductivity of tetrahydrofuran hydrate. Phys. Chem. Chem. Phys. 7, 728–730 (2005).

    Article  Google Scholar 

  32. Wybourne, M. N., Kiff, B. J. & Batchelder, D. N. Anomalous thermal conduction in polydiacetylene single crystals. Phys. Rev. Lett. 53, 580–583 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Toellner, A. Said and A. Alatas of the Advanced Photon Source for their help during the experiment. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, Office of Science, under Contract no. W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Tse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, J., Klug, D., Zhao, J. et al. Anharmonic motions of Kr in the clathrate hydrate. Nature Mater 4, 917–921 (2005). https://doi.org/10.1038/nmat1525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing