Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous formation of nanoparticle stripe patterns through dewetting

Abstract

Significant advancement has been made in nanoparticle research, with synthetic techniques extending over a wide range of materials with good control over particle size and shape1,2,3,4,5,6. A grand challenge is assembling and positioning the nanoparticles in desired locations to construct complex, higher-order functional structures. Controlled positioning of nanoparticles has been achieved in pre-defined templates fabricated by top–down approaches7,8. A self-assembly method, however, is highly desirable because of its simplicity and compatibility with heterogeneous integration processes. Here we report on the spontaneous formation of ordered gold and silver nanoparticle stripe patterns on dewetting a dilute film of polymer-coated nanoparticles floating on a water surface. Well-aligned stripe patterns with tunable orientation, thickness and periodicity at the micrometre scale were obtained by transferring nanoparticles from a floating film onto a substrate in a dip-coating fashion. This facile technique opens up a new avenue for lithography-free patterning of nanoparticle arrays for various applications including, for example, multiplexed surface-enhanced Raman substrates and templated fabrication of higher-order nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spoke pattern formation.
Figure 2: Extended stripe pattern formation through dip-coating.
Figure 3: The stripe pattern dictated by the moving contact line.
Figure 4: Tuning stripe dimension by changing the surface pressure of the water-supported nanoparticle film.

Similar content being viewed by others

References

  1. Ahmadi, T., Wang, Z., Green, T., Henglein, A. & ElSayed, M. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996).

    Article  Google Scholar 

  2. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  Google Scholar 

  3. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  Google Scholar 

  4. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Edn 43, 3673–3677 (2004).

    Article  Google Scholar 

  5. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  Google Scholar 

  6. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  Google Scholar 

  7. Yin, Y., Lu, Y. & Xia, Y. A self-assembly approach to the formation of asymmetric dimers from monodispersed spherical colloids. J. Am. Chem. Soc. 123, 771–772 (2001).

    Article  Google Scholar 

  8. Liddle, J. A., Cui, Y. & Alivisatos, P. Lithographically directed self-assembly of nanostructures. J. Vac. Sci. Technol. B 22, 3409–3414 (2004).

    Article  Google Scholar 

  9. Pockels, A. Surface tension. Nature 43, 437–439 (1891).

    Google Scholar 

  10. Langmuir, I. & Blodgett, K. B. A new method of investigating unimolecular films. Kolloid-Zeitschrift 73, 258–263 (1935).

    Article  Google Scholar 

  11. Blodgett, K. B. Monomolecular films of fatty acids on glass. J. Am. Chem. Soc. 56, 495 (1934).

    Article  Google Scholar 

  12. Roberts, G. (ed.) Langmuir–Blodgett Films (Plenum, New York, 1990).

  13. McCullough, D. H. III & Regen, S. L. Don’t forget Langmuir–Blodgett films. Chem. Commun. 2787–2791 (2004).

  14. Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J. & Schwartz, D. K. Langmuir–Blodgett films. Science 263, 1726–1733 (1994).

    Article  Google Scholar 

  15. Tao, A. et al. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003).

    Article  Google Scholar 

  16. Song, H., Kim, F., Connor, S., Somorjai, G. & Yang, P. Pt nanocrystals: Shape control and Langmuir–Blodgett monolayer formation. J. Phys. Chem. B 109, 188–193 (2005).

    Article  Google Scholar 

  17. Yang, P. & Kim, F. Langmuir–Blodgett assembly of one-dimensional nanostructures. Chem. Phys. Chem. 3, 503–506 (2002).

    Article  Google Scholar 

  18. Kim, F., Kwan, S., Akana, J. & Yang, P. Langmuir–Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360–4361 (2001).

    Article  Google Scholar 

  19. Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    Article  Google Scholar 

  20. Whang, D., Jin, S., Wu, Y. & Lieber, C. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

    Article  Google Scholar 

  21. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277, 1978–1981 (1997).

    Article  Google Scholar 

  22. Sztrum, C. G., Hod, O. & Rabani, E. Self-assembly of nanoparticles in three-dimensions: Formation of stalagmites. J. Phys. Chem. B 109, 6741–6747 (2005).

    Article  Google Scholar 

  23. Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003).

    Article  Google Scholar 

  24. Fitzgerald, S. D. & Woods, A. W. The instability of a vaporization front in hot porous rock. Nature 367, 450–453 (1994).

    Article  Google Scholar 

  25. Cazabat, A. M., Heslot, F., Troian, S. M. & Carles, P. Fingering instability of thin spreading films driven by temperature gradients. Nature 346, 824–826 (1990).

    Article  Google Scholar 

  26. Gleiche, M., Chi, L. F. & Fuchs, H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature 403, 173–175 (2000).

    Article  Google Scholar 

  27. Karthaus, O., Grasjo, L., Maruyama, N. & Shimomura, M. Formation of ordered mesoscopic polymer arrays by dewetting. Chaos 9, 308–314 (1999).

    Article  Google Scholar 

  28. Aizenberg, J., Black, A. J. & Whitesides, G. M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495–498 (1999).

    Article  Google Scholar 

  29. Sear, R., Chung, S., Markovich, G., Gelbart, W. & Heath, J. Spontaneous patterning of quantum dots at the air-water interface. Phys. Rev. E 59, R6255–R6258 (1999).

    Article  Google Scholar 

  30. Cazabat, A. M., Heslot, F., Troian, S. M. & Carles, P. Fingering instability of thin spreading films driven by temperature-gradients. Nature 346, 824–826 (1990).

    Article  Google Scholar 

  31. Purrucker, O., Foertig, A., Luedtke, K., Jordan, R. & Tanaka, M. Confinement of transmembrane cell receptors in tunable stripe micropatterns. J. Am. Chem. Soc. 127, 1258–1264 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Fan, H. Yan, T. Kuykendall and P. Pauzauskie for technical assistance and helpful discussions. This work was supported by the National Science Foundation (CAREER) and the Office of Basic Science, Department of Energy. J.H. gratefully acknowledges the Miller Institute for Basic Research in Science for a postdoctoral fellowship. A.R.T. gratefully acknowledges the National Science Foundation for a graduate research fellowship. S.C. gratefully acknowledges a summer undergraduate research fellowship through Center of Integrated Nanomechanical Systems (COINS). We thank the National Center for Electron Microscopy for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2, S3 and S4 plus movie legends (PDF 516 kb)

Supplementary movie S1

Supplementary movie S1 (AVI 1921 kb)

Supplementary movie S2

Supplementary movie S2 (AVI 3918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Kim, F., Tao, A. et al. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Mater 4, 896–900 (2005). https://doi.org/10.1038/nmat1517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing