Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering

Abstract

Full understanding of atomic arrangement in amorphous oxides both at ambient and high pressure is an ongoing fundamental puzzle. Whereas the structures of archetypal oxide glasses such as v-B2O3 at high pressure are essential to elucidate origins of anomalous macroscopic properties of more complex melts, knowledge of the high-pressure structure and pressure-induced coordination changes of these glasses has remained elusive due to lack of suitable in situ experimental probes. Here, we report synchrotron inelastic X-ray scattering results for v-B2O3 at pressures up to 22.5 GPa, revealing the nature of pressure-induced bonding changes and the structure. Direct in situ measurements show a continuous transformation from tri-coordinated to tetra-coordinated boron beginning at 4–7 GPa with most of the boron tetra-coordinated above 20 GPa, forming dense tetrahedral v-B2O3. After decompression from high pressure the bonding reverts back to tri-coordinated boron but with the data suggesting a permanent densification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 5: A schematic diagram for the pressure-induced changes in bonding nature in B2O3 glasses (for example, transformation to [4]B from [3]B in the boroxol ring).
Figure 1: Boron K-edge IXS spectra.
Figure 2: Boron K-edge IXS spectra.
Figure 3: The pressure dependence of the [3]B percentage and the position of the [3]π* peak.
Figure 4: Oxygen K-edge IXS spectra.

Similar content being viewed by others

References

  1. Wolf, G. H. & McMillan, P. F. in Structure, Dynamics, and Properties of Silicate Melts (eds Stebbins, J. F., McMillan, P. F. & Dingwell, D. B.) 505–562 (Mineralogical Society of America, Washington DC, 1995).

    Book  Google Scholar 

  2. Elliot, S. R. Physics of Amorphous Materials (Wiley, New York, 1988).

    Google Scholar 

  3. Hemley, R. J., Mao, H. K., Bell, P. M. & Mysen, B. O. Raman spectroscopy of SiO2 glass at high pressure. Phys. Rev. Lett. 57, 747–750 (1986).

    Article  Google Scholar 

  4. Yarger, J. L. et al. Al coordination changes in high-pressure aluminosilicate liquids. Science 270, 1964–1967 (1995).

    Article  Google Scholar 

  5. Dingwell, D. B., Pichavant, M. & Holtz, F. in Boron, Mineralogy, Petrology and Geochemistry (eds Grew, E. S. & Anovitz, L. M.) 331–385 (Mineralogical Society of America, Washington DC, 1996).

    Book  Google Scholar 

  6. Lee, S. K., Cody, G. D., Fei, Y. & Mysen, B. O. The nature of polymerization and properties of silicate glasses and melts at high pressure. Geochim. Cosmochim. Acta 68, 4189–4200 (2004).

    Article  Google Scholar 

  7. Angell, C. A., Cheeseman, P. A. & Tamaddon, S. Pressure enhancement of ion mobilities in liquid silicates from computer simulations studies to 800 kbar. Science 218, 885–887 (1982).

    Article  Google Scholar 

  8. Guthrie, M. et al. The formation and structure of a dense octahedral glass. Phys. Rev. Lett. 93, 115502 (2004).

    Article  Google Scholar 

  9. Bray, P. J. Nuclear magnetic resonance studies of glass structure. J. Non-Cryst. Solids 73, 19–45 (1985).

    Article  Google Scholar 

  10. Lee, S. K., Musgrave, C. B., Zhao, P. & Stebbins, J. F. Topological disorder and reactivity of borosilicate glasses: Ab initio molecular orbital calculations and 17O and 11B NMR. J. Phys. Chem. B 105, 12583–12595 (2001).

    Article  Google Scholar 

  11. Youngman, R. E., Haubrich, S. T., Zwanziger, J. W., Janicke, M. T. & Chmelka, B. F. Short- and intermediate-range structural ordering in glassy boron oxide. Science 269, 1416–1420 (1995).

    Article  Google Scholar 

  12. Swenson, J. & Borjesson, L. Fraction of boroxol rings in vitreous boron trioxide. Phys. Rev. B 55, 11138–11143 (1997).

    Article  Google Scholar 

  13. Lee, S. K., Fei, Y., Cody, G. D. & Mysen, B. O. Order and disorder of sodium silicate glasses and melts at 10 GPa. Geophys. Res. Lett. 30, 1845 (2003).

    Google Scholar 

  14. Du, L. S., Allwardt, J. R., Schmidt, B. C. & Stebbins, J. F. Pressure-induced structural changes in a borosilicate glass-forming liquid: boron coordination, non-bridging oxygens, and network ordering. J. Non-Cryst. Solids 337, 196–200 (2004).

    Article  Google Scholar 

  15. Lee, S. K., Mibe, K., Fei, Y., Cody, G. D. & Mysen, B. O. Structure of B2O3 glass at high pressure: B-11 solid-state NMR study. Phys. Rev. Lett. 94, 165507 (2005).

    Article  Google Scholar 

  16. Meng, Y. et al. The formation of sp(3) bonding in compressed BN. Nature Mater. 3, 111–114 (2004).

    Article  Google Scholar 

  17. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  Google Scholar 

  18. Wernet, P. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004).

    Article  Google Scholar 

  19. Bowron, D. T. et al. X-ray-Raman scattering from the oxygen K edge in liquid and solid H2O . Phys. Rev. B. 62, R9223–R9227 (2000).

    Article  Google Scholar 

  20. Cai, Y. Q. et al. Ordering of hydrogen bonds in high-pressure low-temperature H2O . Phys. Rev. Lett. 94, 025502 (2005).

    Article  Google Scholar 

  21. Schwarz, W. H. E., Mensching, L., Hallmeier, K. H. & Szargan, R. K-shell excitation of BF3, CF4 and MBF4 compouds. Chem. Phys. 82, 57–65 (1983).

    Article  Google Scholar 

  22. Fleet, M. E. & Muthupari, S. Boron K-edge XANES of borate and borosilicate minerals. Am. Mineral. 85, 1009–1021 (2000).

    Article  Google Scholar 

  23. Muramatsu, Y., Oshima, M. & Kato, H. Resonant x-ray Raman scattering in B Ka emission spectra of boron oxide (B2O3) excited by undulator radiation. Phys. Rev. Lett. 71, 448–451 (1993).

    Article  Google Scholar 

  24. Yun, Y. H. & Bray, P. J. Nuclear magnetic resonance studies of the glasses in the system Na2O–B2O3–SiO2 . J. Non-Cryst. Solids 27, 363–380 (1978).

    Article  Google Scholar 

  25. Fleet, M. E. & Muthupari, S. Cordination of boron in alkali borosilicate glasses using XANES. J. Non-Cryst. Solids 255, 233–241 (1999).

    Article  Google Scholar 

  26. Grimsditch, M., Polian, A. & Wright, A. C. Irreversible structural changes in vitreous B2O3 under pressure. Phys. Rev. B 54, 152–155 (1996).

    Article  Google Scholar 

  27. Nicholas, J., Sinogeikin, S., Kieffer, J. & Bass, J. Spectroscopic evidence of polymorphism in vitreous B2O3 . Phys. Rev. Lett. 92, 215701 (2004).

    Article  Google Scholar 

  28. Garvie, I. A. J., Craven, A. J. & Brydson, R. Parallel electron energy-loss spectroscopy (PEELS) study of B in minerals: The electron energy-loss near edge structure (ELNES) of the B K-edge. Am. Mineral. 80, 1132–1144 (1995).

    Article  Google Scholar 

  29. Sauer, H., Brydson, R., Rowley, P. N., Engel, W. & Thomas, J. M. Determination of coordination and coordination specific site occupancy by electron-energy loss spectroscopy: An investigation of boron-oxygen compounds. Ultramicroscopy 49, 198–209 (1993).

    Article  Google Scholar 

  30. Muramatsu, Y. et al. Valence band structure and decay process in the inner shell excitation of boron oxide. X-ray Spectrom. 28, 503–508 (1999).

    Article  Google Scholar 

  31. Wright, A. C. et al. Structure of pressure compacted vitreous boron oxide. Phys. Chem. Glasses 41, 296–299 (2000).

    Google Scholar 

  32. Takada, A. Molecular dynamics study of pressure induced structural changes in B2O3 . Phys. Chem. Glasses 45, 156–159 (2004).

    Google Scholar 

  33. Lacy, E. D. Aluminum in glasses and melts. Phys. Chem. Glasses 4, 234–238 (1963).

    Google Scholar 

  34. Stebbins, J. F. & Xu, Z. NMR evidence for excess non-bridging oxygen in aluminosilicate glass. Nature 390, 60–62 (1997).

    Article  Google Scholar 

  35. Toplis, M. J., Dingwell, D. B. & Lenci, T. Peraluminous viscosity maxima in Na2O-Al2O3-SiO2 liquids: the role of triclusters in tectosilicate melts. Geochim. Cosmochim. Acta 61, 2605–2612 (1997).

    Article  Google Scholar 

  36. Lee, S. K. The structure of silicate melts at high pressure: Quantum chemical calculations and solid state NMR. J. Phys. Chem. B. 108, 5889–5900 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Mao, R. Hemley, T. Trainor, G. Shen, J. -F. Lin, C. -C. Kao, G. Cody, W.Sturhahn and B. Mysen for their helpful discussion, and J. Ciston and S. Ghose for help during the measurements. Use of the Advanced Photon Source was supported by DOE Basic Energy Sciences (BES). GSECARS was supported by DOE-BES-Geosciences, NSF—Earth Sciences and the State of Illinois. HPCAT was supported by DOE-BES-Materials Science, DOE-NNSA, CDAC, NSF, DOD–TACOM, and the W. M. Keck Foundation. S.K.L. was supported by funds from BK21 in Korea and a Young Scientist award from Korea Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Keun Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Eng, P., Mao, Hk. et al. Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering. Nature Mater 4, 851–854 (2005). https://doi.org/10.1038/nmat1511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1511

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing