Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The quantum spin-valve in cobalt atomic point contacts

Abstract

Magnetic materials reduced to a single atom show unexpected magnetic properties that interact with the spin states of the transmitting electrons and modify the nature of the quantized conductance. This integration of quantized conductance and spin-dependent transport across a magnetic atom gives rise to a multichannel system across which the transmission of electron waves can be regulated by a domain wall acting as a ‘valve’ —a quantum spin-valve. Here we measure complete magnetoresistance loops across magnetic quantum point contacts as small as a single atom, using cobalt. ‘Discrete’ or quantum magnetoresistance loops are observed owing to the varying transmission probability from the available discrete conductance channels. A remarkable feature of these quantum contacts is the discovery of a rapid oscillatory decay in magnetoresistance with increasing contact size. The results provide an evolutionary trace of spin-dependent transport from a single atom to larger ensembles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical properties of cobalt quantum point contacts of various sizes, with contacts in the spin-split state formed in the presence of a constant magnetic field of approximately 600 Oe.
Figure 2: Low-magnification scanning electron microscope (Hitachi, model S-4000) image of the microfabricated electrodes between which a cobalt point contact of 0.5Go conductance was electrodeposited.
Figure 3: Quantum magnetoresistance loops showing the stepwise change in resistance with applied magnetic field in cobalt point contacts of various sizes along with an illustration of discrete conductance channels due to the transverse confinement of electron waves.
Figure 4: The oscillatory nature of magnetoresistance as a function of quantized conductance in the high-field (ferromagnetically aligned) state.

Similar content being viewed by others

References

  1. Wharam, D. A. et al. Addition of the one-dimensional quantised ballistic resistance. J. Phys. C 21, L887–L891 (1988).

    Article  Google Scholar 

  2. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  Google Scholar 

  3. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  Google Scholar 

  4. Fowler, A. B., Fang, F. F., Howard, W. E. & Stiles, P. J. Magneto-oscillatory conductance in silicon surfaces. Phys. Rev. Lett. 16, 901–903 (1966).

    Article  Google Scholar 

  5. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  Google Scholar 

  6. Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with applications to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Article  Google Scholar 

  7. Krans, J. M., van Ruitenbeek, J. M., Fisun, V. V., Yanson, I. K. & de Jongh, L. J. The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995).

    Article  Google Scholar 

  8. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  Google Scholar 

  9. Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993).

    Article  Google Scholar 

  10. Olesen, L. et al. Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 72, 2251–2254 (1994).

    Article  Google Scholar 

  11. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  Google Scholar 

  12. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  Google Scholar 

  13. Gamberdella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticle. Science 300, 1130–1133 (2003).

    Article  Google Scholar 

  14. Scheer, E. et al. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998).

    Article  Google Scholar 

  15. García, N., Muñoz, M. & Zhao, Y. -W. Magnetoresistance in excess of 200% in ballistic Ni nanocontacts at room temperature and 100 Oe. Phys. Rev. Lett. 82, 2923–2926 (1999).

    Article  Google Scholar 

  16. Tatara, G., Zhao, Y. -W., Muñoz, M. & García, N. Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys. Rev. Lett. 83, 2030–2033 (1999).

    Article  Google Scholar 

  17. Sullivan, M. R., Boehm, D. A., Ateya, D. A., Hua, S. Z. & Chopra, H. D. Ballistic magnetoresistance in nickel single-atom conductors without magnetostriction. Phys. Rev. B 71, 024412 (2005).

    Article  Google Scholar 

  18. Versluijs, J. J., Bari, M. A. & Coey, J. M. D. Magnetoresistance of half-metallic oxide nanocontacts. Phys. Rev. Lett. 87, 026601 (2001).

    Article  Google Scholar 

  19. Imamura, H., Kobayashi, N., Takahashi, S. & Maekawa, S. Conductance quantization and magnetoresistance in magnetic point contacts. Phys. Rev. Lett. 84, 1003–1006 (2000).

    Article  Google Scholar 

  20. Tagirov, L. R., Vodopyanov, B. P. & Efetov, K. B. Multivalued dependence of the magnetoresistance on the quantized conductance in nanosize magnetic contacts. Phys. Rev. B 65, 214419 (2002).

    Article  Google Scholar 

  21. Velev, J. & Butler, W. Domain-wall resistance in metal nanocontacts. Phys. Rev. B 69, 094425 (2004).

    Article  Google Scholar 

  22. García, N. et al. Ballistic magnetoresistance in a magnetic nanometer sized contact: An effective gate for spintronics. Appl. Phys. Lett. 79, 4550–4552 (2001).

    Article  Google Scholar 

  23. Chopra, H. D. & Hua, S. Z. Ballistic magnetoresistance over 3000% in Ni nanocontacts at room temperature. Phys. Rev. B 66, 020403 (2002).

    Article  Google Scholar 

  24. Hua, S. Z. & Chopra, H. D. 100,000% ballistic magnetoresistance in stable Ni nanocontacts at room temperature. Phys. Rev. B 67, 060401 (2003).

    Article  Google Scholar 

  25. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  Google Scholar 

  26. Hansen, K. et al. Current-voltage curves of gold quantum point contacts revisited. Appl. Phys. Lett. 77, 708–710 (2000).

    Article  Google Scholar 

  27. Bruno, P. Geometrically constrained magnetic wall. Phys. Rev. Lett. 83, 2425–2428 (1999).

    Article  Google Scholar 

  28. Labaye, Y., Berger, L. & Coey, J. M. D. Domain walls in ferromagnetic nanoconstriction. J. Appl. Phys. 91, 5341–5346 (2002).

    Article  Google Scholar 

  29. Molyneux, V. A., Osipov, V. V. & Ponizovskaya, E. V. Stable two- and three-dimensional geometrically constrained magnetic structures: The action of magnetic fields. Phys. Rev. B 65, 184425 (2002).

    Article  Google Scholar 

  30. Jubert, P. -O., Allenspach, R. & Bischof, A. Magnetic domain walls in constrained geometries. Phys. Rev. B 69, 220410 (2004).

    Article  Google Scholar 

  31. Kazantseva, N., Wieser, R. & Nowak, U. Transition to linear domain walls in nanoconstrictions. Phys. Rev. Lett. 94, 037206 (2005).

    Article  Google Scholar 

  32. Chung, S. H., Muñoz, M., García, N., Egelhoff, W. F. & Gomez, R. D. Universal scaling of ballistic magnetoresistance in magnetic nanocontacts. Phys. Rev. Lett. 89, 287203 (2002).

    Article  Google Scholar 

  33. Chung, S. H., Muñoz, M., García, N., Egelhoff, W. F. & Gomez, R. D. Universal scaling of magnetoconductance in magnetic nanocontacts (invited). J. Appl. Phys. 93, 7939–7944 (2002).

    Article  Google Scholar 

  34. García, N. et al. Ballistic magnetoresistance in different nanocontact configurations: a basis for future magnetoresistive sensors. J. Magn. Magn. Mater. 240, 92–99 (2002).

    Article  Google Scholar 

  35. Schilling, R. Quantum theory of domain walls. Phys. Rev. B 15, 2700–2703 (1977).

    Article  Google Scholar 

  36. Riordan, M. & Hoddeson, L. Crystal Fire, the Birth of the Information Age 131 (W. W. Norton, New York, 1997).

    Google Scholar 

  37. Boussaad, S. & Tao, N. J. Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method. Appl. Phys. Lett. 80, 2398–2400 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by NSF-DMR-FRG-03-05242. The authors thank D. Ateya for help in microfabrication of the templates and acknowledge P. Bush, South Campus Instrumentation Center, for help with scanning electron microscopy of the contacts. Microfabrication was performed, in part, at the Cornell Nanofabrication Facility, which is supported by the NSF Grant ECS-9731293, Cornell University, and industrial affiliates. The authors thank L. Deresh and D. Lashmore for suggestions on electrochemistry, and L. Bennett for pointing to the history of point contact transistors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harsh Deep Chopra or Susan Z. Hua.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, H., Sullivan, M., Armstrong, J. et al. The quantum spin-valve in cobalt atomic point contacts. Nature Mater 4, 832–837 (2005). https://doi.org/10.1038/nmat1510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing