Abstract
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, Weinheim, 2003).
- 2.
Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K.Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).
- 3.
Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G. & Montemagno, C. D. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).
- 4.
Soong, R. K., Neves, H. P., Schmidt, J. J. & Montemagno, C. D. Engineering issues in the fabrication of a hybrid nano-propeller system powered by F1-ATPase. Biomed. Microdev. 3, 71–73 (2001).
- 5.
Hess, H., Clemmens, J., Qin, D., Howard, J. & Vogel, V. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett. 1, 235–239 (2001).
- 6.
Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).
- 7.
Diez, S. et al. Stretching and transporting DNA molecules using motor proteins. Nano Lett. 3, 1251–1254 (2003).
- 8.
Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).
- 9.
Sauvage, J. P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, Weinheim, 1999).
- 10.
Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Edn Engl. 39, 3348–3391 (2000).
- 11.
Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines - A Journey into the Nanoworld (Wiley-VCH, Weinheim, 2003).
- 12.
Kay, E. R. & Leigh, D. A. Synthetic molecular machines. in Functional Artificial Receptors (eds Schrader, T. & Hamilton, A. D.) (Wiley-VCH, Weinheim, 2005).
- 13.
Huang, T. J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2004).
- 14.
Flood, A. H. et al. Meccano on the nanoscale - A blueprint for making some of the world’s tiniest machines. Aust. J. Chem. 57, 301–322 (2004).
- 15.
Bottari, G., Leigh, D. A. & Pérez, E. M. Chiroptical switching in a bistable molecular shuttle. J. Am. Chem. Soc. 125, 13360–13361 (2003).
- 16.
Wang, Q. -C., Qu, D. -H., Ren, J., Chen, K. & Tian, H. A lockable light-driven molecular shuttle with a fluorescent signal. Angew. Chem. Int. Edn Engl. 43, 2661–2665 (2004).
- 17.
Qu, D. -H., Wang, Q. -C., Ren, J. & Tian, H. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett. 6, 2085–2088 (2004).
- 18.
Pérez, E. M., Dryden, D. T. F., Leigh, D. A., Teobaldi, G. & Zerbetto, F. A generic basis for some simple light-operated mechanical molecular machines. J. Am. Chem. Soc. 126, 12210–12211 (2004).
- 19.
Leigh, D. A. et al. Patterning through controlled submolecular motion: Rotaxane-based switches and logic gates that function in solution and polymer films. Angew. Chem. Int. Edn Engl. 44, 3062–3067 (2005).
- 20.
Altieri, A. et al. Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. Angew. Chem. Int. Edn Engl. 42, 2296–2300 (2003).
- 21.
Masaaki, Y. & Masashi, M. Newest Aspects of Fluoro Functional Materials (CMC, Tokyo, 1994).
- 22.
Cavallini, M. et al. Information storage using supramolecular surface patterns. Science 299, 531 (2003).
- 23.
Cecchet, F. et al. Structural, electrochemical, and photophysical properties of a molecular shuttle attached to an acid-terminated self-assembled monolayer. J. Phys. Chem. B 108, 15192–15199 (2004).
- 24.
Katz, E., Lioubashevsky, O. & Willner, I. Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc. 126, 15520–15532 (2004).
- 25.
Kim, K. et al. A pseudorotaxane on gold: Formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew. Chem. Int. Edn Engl. 42, 2293–2296 (2003).
- 26.
Long, B., Nikitin, K. & Fitzmaurice, D. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle. J. Am. Chem. Soc. 125, 15490–15498 (2003).
- 27.
Katz, E., Sheeney Haj, I. & Willner, I. Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem. Int. Edn Engl. 43, 3292–3300 (2004).
- 28.
Huang, T. J. et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).
- 29.
Tseng, H. -R., Wu, D., Fang, N. X., Zhang, X. & Stoddart, J. F. The metastability of an electrochemically controlled nanoscale machine on gold surfaces. Chem. Phys. Chem. 5, 111–116 (2004).
- 30.
Jang, S. S. et al. Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc. 127, 1563–1575 (2005).
- 31.
Liu, Y., Mu, L., Liu, B. & Kong, J. Controlled switchable surfaces. Chem. Eur. J. 11, 2622–2631 (2005).
- 32.
Grunze, M. Driven liquids. Science 283, 41–42 (1999).
- 33.
Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).
- 34.
Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–61 (1999).
- 35.
Daniel, S., Chaudhury, M. K. & Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).
- 36.
Ichimura, K., Oh, S. -K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).
- 37.
Oh, S. -K., Nakagawa, M. & Ichimura, K. Photocontrol of liquid motion on an azobenzene monolayer. J. Mater. Chem. 12, 2262–2269 (2002).
- 38.
Greenspan, H. P. On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125–143 (1978).
- 39.
Brochard, F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5, 432–438 (1989).
- 40.
Neumann, A. W. & Good, R. J. in Surface and Colloid ScienceVol. 11 (eds Good, R. J. & Stromberg, R. R.) 31–91 (Plenum, New York, 1979).
- 41.
Blomstrom, D. C., Herbig, K. & Simmons, H. E. Photolysis of methylene iodide in the presence of olefins. J. Org. Chem. 30, 959–964 (1965).
- 42.
Pienta, N. J. & Kropp, P. J. Photochemistry of alkyl halides. 6. gem-Diiodides. A convenient method for the cyclopropanation of olefins. J. Am. Chem. Soc. 100, 655–657 (1978).
- 43.
Kropp, P. J., Pienta, N. J., Sawyer, J. A. & Polniaszek, R. P. Photochemistry of alkyl halides-VII: Cyclopropanation of alkenes. Tetrahedron 37, 3229–3236 (1981).
- 44.
Tamovsky, A. N., Alvarez, J. -L., Arkady, P., Sundstrom, V. & Akesson, E. Photodissociation dynamics of diiodomethane in solution. Chem. Phys. Lett. 312, 121–130 (1999).
- 45.
Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).
Acknowledgements
We thank Isabel Casades (University of Edinburgh) for preliminary studies on fluoroalkane molecular shuttle systems and Bert de Boer and Sense Jan van der Molen (Materials Science Centre, University of Groningen) for providing heptadecafluorodecanethiol and the Xenon ultraviolet-lamp used in the transport studies. The Secretaría de Estado de Educación y Universidades and Fondo Social Europeo are acknowledged for a Postdoctoral Fellowship to J.B. This work was funded by the Engineering and Physical Sciences Research Council (UK) and as part of the EU research training network EMMMA and the Future and Emerging Technologies project MechMol.
Author information
Affiliations
School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
- José Berná
- , David A. Leigh
- & Emilio M. Pérez
Materials Science Centre, Rijksuniversiteit Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
- Monika Lubomska
- , Sandra M. Mendoza
- & Petra Rudolf
Dipartimento di Chimica ‘G. Ciamician’, Università degli Studi di Bologna, v. F. Selmi 2, 40126 Bologna, Italy
- Gilberto Teobaldi
- & Francesco Zerbetto
Authors
Search for José Berná in:
Search for David A. Leigh in:
Search for Monika Lubomska in:
Search for Sandra M. Mendoza in:
Search for Emilio M. Pérez in:
Search for Petra Rudolf in:
Search for Gilberto Teobaldi in:
Search for Francesco Zerbetto in:
Competing interests
The authors declare no competing financial interests.
Corresponding authors
Correspondence to David A. Leigh or Petra Rudolf or Francesco Zerbetto.
Supplementary information
PDF files
- 1.
Supplementary information
Supplementary information and figures
Videos
- 1.
Supplementary movie
Supplementary movie 1
- 2.
Supplementary movie
Supplementary movie 2
- 3.
Supplementary movie
Supplementary movie 3
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.