Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative equivalence between polymer nanocomposites and thin polymer films

Abstract

The thermomechanical responses of polymers, which provide limitations to their practical use, are favourably altered by the addition of trace amounts of a nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. Here we show that the thermomechanical properties of ‘polymer nanocomposites’ are quantitatively equivalent to the well-documented case of planar polymer films. We quantify this equivalence by drawing a direct analogy between film thickness and an appropriate experimental interparticle spacing. We show that the changes in glass-transition temperature with decreasing interparticle spacing for two filler surface treatments are quantitatively equivalent to the corresponding thin-film data with a non-wetting and a wetting polymer–particle interface. Our results offer new insights into the role of confinement on the glass transition, and we conclude that the mere presence of regions of modified mobility in the vicinity of the particle surfaces, that is, a simple two-layer model, is insufficient to explain our results. Rather, we conjecture that the glass-transition process requires that the interphase regions surrounding different particles interact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images showing fracture surfaces.
Figure 2: The glass-transition behaviour of SiO2/PS nanocomposites.
Figure 3: Representative TEM micrographs of SiO2/PS nanocomposites at various filler concentrations prepared using MEK.
Figure 4: A comparison between the glass-transition responses of PS nanocomposite and thin PS films.
Figure 5: The effect of solvent on the agglomeration of nanoparticles.

Similar content being viewed by others

References

  1. Starr, F. W., Schroeder, T. B. & Glotzer, S. C. Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. Phys. Rev. E 64, 021802–021806 (2001).

    Article  Google Scholar 

  2. Tran, T. A., Saï d, S. & Grohens, Y. Compared study of cooperativity in PMMA nanocomposites and thin films. Compos. A: Appl. Sci. 36, 461–465 (2005).

    Article  Google Scholar 

  3. Becker, C., Krug, H. & Schmidt, H. Tailoring of thermomechanical properties of thermoplastic nanocomposite by surface modification of nanoscale silica particles. Mater. Res. Soc. Symp. Proc. 435, 237–242 (1996).

    Article  Google Scholar 

  4. Tsagaropoulos, G. & Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 28, 6067–6077 (1995).

    Article  Google Scholar 

  5. Bares, J. Glass transition of polymer microphase. Macromolecules 8, 244–246 (1975).

    Article  Google Scholar 

  6. Lipatov, Y. S., Rosovitskii, V. F. & Maslak, Y. V. Glass transition in heterogeneous polymer systems with a high degree of phase separation. Polym. Sci. USSR 26, 1149–1154 (1984).

    Article  Google Scholar 

  7. Besklubenko, Y. D., Privalko, V. P. & Lipatov, Y. S. Thermodynamics of filled poly(methyl methacrylate). Polym. Sci. USSR 20, 1473–1479 (1978).

    Article  Google Scholar 

  8. Lipatov, Y. S. & Privalko, V. P. Glass transition in filled polymer systems. Polym. Sci. USSR 14, 1843–1848 (1972).

    Article  Google Scholar 

  9. Ash, B. J., Siegel, R. W. & Schadler, L. S. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J. Polym. Sci. B 42, 4371–4383 (2004).

    Article  Google Scholar 

  10. Ash, B. J., Schadler, L. S. & Siegel, R. W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater. Lett. 55, 83–87 (2002).

    Article  Google Scholar 

  11. Krishnamoorti, R., Vaia, R. A. & Giannelis, E. P. Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8, 1728–1734 (1996).

    Article  Google Scholar 

  12. Zax, D. B. et al. Dynamical heterogeneity in nanoconfined poly(styrene) chains. J. Chem. Phys. 112, 2945–2951 (2000).

    Article  Google Scholar 

  13. Dalnoki-Veress, K., Forrest, J. A., Murray, C., Gigault, C. & Dutcher, J. R. Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Phys. Rev. E 63, 031801–031810 (2001).

    Article  Google Scholar 

  14. Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependant depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994).

    Article  Google Scholar 

  15. Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nature Mater. 2, 695–700 (2003).

    Article  Google Scholar 

  16. Ellison, T. J. & Torkelson, J. M. Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels. J. Polym. Sci. B 40, 2745–2758 (2002).

    Article  Google Scholar 

  17. Forrest, J. A. & Dalnoki-Veress, K. The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167–196 (2001).

    Article  Google Scholar 

  18. Forrest, J. A., Dalnoki-Veress, K. & Dutcher, J. R. Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705–5716 (1997).

    Article  Google Scholar 

  19. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R. & Dutcher, J. R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996).

    Article  Google Scholar 

  20. Forrest, J. A. & Mattsson, J. Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53–R56 (2000).

    Article  Google Scholar 

  21. Fukao, K. & Miyamoto, Y. Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene. Phys. Rev. E 61, 1743–1754 (2000).

    Article  Google Scholar 

  22. Fukao, K., Uno, S., Miyamoto, Y., Hoshino, A. & Miyaji, H. Dynamics of α and β processes in thin polymer films: Polyvinyl acetate and polymethyl methacrylate. Phys. Rev. E 64, 051807–051811 (2001).

    Article  Google Scholar 

  23. Fukao, K., Uno, S., Miyamoto, Y., Hoshino, A. & Miyaji, H. Relaxation dynamics in thin supported polymer films. J. Non-Cryst. Solids 307, 517–523 (2002).

    Article  Google Scholar 

  24. Long, D. & Lequeux, F. Hetrogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371–387 (2001).

    Article  Google Scholar 

  25. Mattsson, J., Forrest, J. A. & Borjesson, L. Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys. Rev. E 62, 5187–5200 (2000).

    Article  Google Scholar 

  26. Mayes, A. M. Glass transition of amorphous polymer surfaces. Macromolecules 27, 3114–3115 (1994).

    Article  Google Scholar 

  27. McCoy, J. D. & Curro, J. G. Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154–9157 (2002).

    Article  Google Scholar 

  28. Roth, C. B. & Dutcher, J. R. Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. E 12, S103–S107 (2003).

    Article  Google Scholar 

  29. Sills, S. et al. Interfacial glass transition profiles in ultrathin, spin cast polymer films. J. Chem. Phys. 120, 5334–5338 (2004).

    Article  Google Scholar 

  30. Singh, L., Ludovice, P. J. & Henderson, C. L. Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 449, 231–241 (2004).

    Article  Google Scholar 

  31. Starr, F. W. & Glotzer, S. C. Simulations of filled polymers on multiple length scales. Mater. Res. Soc. Symp. Proc. 661, KK4.1/1–KK4.1/13 (2001).

    Google Scholar 

  32. vanZanten, J. H., Wallace, W. E. & Wu, W. -L. Effect of strongly favourable substrate interactions on the thermal properties of ultrathin polymer films. Phys. Rev. E 53, R2053–R2056 (1996).

    Article  Google Scholar 

  33. Sharp, J. S. & Forrest, J. A. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys. Rev. Lett. 91, 235701–235704 (2003).

    Article  Google Scholar 

  34. Jean, Y. C. et al. Glass transition of polystyrene near the surface studied by slow-positron-annihilation spectroscopy. Phys. Rev. B 56, R8459–R8462 (1997).

    Article  Google Scholar 

  35. Li, C. & Benicewicz, B. C. Synthesis of well defined polymer brushes grafted onto silica nanoparticles via surface reversible addtion-fragmentation chain transfer polymerization. Macromolecules 28, 5929–5936 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Science Foundation for funding this research through a Nanoscale Science and Engineering Center Grant. Additional funding was provided by the NSF Division of Materials Research (S.K.K.), Eastman Kodak (B.C.B., S.K.K. and L.S.S.) and the Office of Naval Research (S.K.K. and L.S.S.). The authors also thank R. Krishnamoorti, S. Granick, S. S. Sternstein, P. Keblinski, J. Forrest, M. T. Takemori and A. Eitan for discussions and comments, W. Kim for gel permeation chromatography experiments, A. Kumar for SEM images and the 2001 Mettler–Toledo Thermal Analysis Educational Grant for DSC and TGA. K.C. would like to thank the Ministry of Science and Technology of Korea (National Research Laboratory Program) for their funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanat K. Kumar or Linda S. Schadler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, A., Yang, H., Li, C. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater 4, 693–698 (2005). https://doi.org/10.1038/nmat1447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing