Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime

Abstract

Carbon nanotubes1,2 are a good realization of one-dimensional crystals where basic science and potential nanodevice applications merge3. Defects are known to modify the electrical resistance of carbon nanotubes4; they can be present in as-grown carbon nanotubes, but controlling their density externally opens a path towards the tuning of the electronic characteristics of the nanotube. In this work, consecutive Ar+ irradiation doses are applied to single-walled nanotubes (SWNTs) producing a uniform density of defects. After each dose, the room-temperature resistance versus SWNT length (R(L)) along the nanotube is measured. Our data show an exponential dependence of R(L) indicating that the system is within the strong Anderson localization regime. Theoretical simulations demonstrate that mainly di-vacancies contribute to the resistance increase induced by irradiation, and that just a 0.03% of di-vacancies produces an increase of three orders of magnitude in the resistance of a SWNT of 400 nm length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Effect of consecutive irradiations on the electrical resistance.
Figure 4: Localization length: experimental and theoretical results.
Figure 3: Simulated resistance versus length for a fixed density of defects.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Ajayan, P. M. & Ebbesen, T. W. Nanometre-size tubes of carbon. Rep. Prog. Phys. 60, 1025–1062 (1997).

    Article  CAS  Google Scholar 

  3. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes — the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  4. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    Article  CAS  Google Scholar 

  5. Packan, P. A. Device physics: Pushing the limits. Science 285, 2079–2081 (1999).

    Article  CAS  Google Scholar 

  6. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  7. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  CAS  Google Scholar 

  8. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  9. Park, J. Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    Article  CAS  Google Scholar 

  10. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  11. Pascual, J. I. et al. Properties of metallic nanowires — from conductance quantization to localization. Science 267, 1793–1795 (1995).

    Article  CAS  Google Scholar 

  12. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  Google Scholar 

  13. Bachtold, A. et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  CAS  Google Scholar 

  14. Terrones, M. et al. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

    Article  CAS  Google Scholar 

  15. Kis, A. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater. 3, 153–157 (2004).

    Article  CAS  Google Scholar 

  16. Choi, H. J., Ihm, J., Louie, S. G. & Cohen, M. L. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917–2920 (2000).

    Article  CAS  Google Scholar 

  17. Crespi, V. H., Cohen, M. L. & Rubio, A. In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 79, 2093–2096 (1997).

    Article  CAS  Google Scholar 

  18. Anantram, M. P. & Govindan, T. R. Conductance of carbon nanotubes with disorder: A numerical study. Phys. Rev. B 58, 4882–4887 (1998).

    Article  CAS  Google Scholar 

  19. McEuen, P. L., Bockrath, M., Cobden, D. H., Yoon, Y. G. & Louie, S. G. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  CAS  Google Scholar 

  20. Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5186–5189 (2000).

    Article  CAS  Google Scholar 

  21. de Pablo, P. J. et al. Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 36804–36808 (2002).

    Article  CAS  Google Scholar 

  22. Gomez-Navarro, C., de Pablo, P. J. & Gomez-Herrero, J. Radial electromechanical properties of carbon nanotubes. Adv. Mater. 16, 549–552 (2004).

    Article  CAS  Google Scholar 

  23. Krasheninnikov, A. V., Nordlund, K., Sirvio, M., Salonen, E. & Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001).

    Article  Google Scholar 

  24. Demkov, A. A., Ortega, J., Sankey, O. F. & Grumbach, M. P. Electronic-structure approach for complex silicas. Phys. Rev. B 52, 1618–1630 (1995).

    Article  CAS  Google Scholar 

  25. Mingo, N. et al. Theory of the scanning tunneling microscope: Xe on Ni and Al. Phys. Rev. B 54, 2225–2235 (1996).

    Article  CAS  Google Scholar 

  26. Pendry, J. B. Symmetry and transport of waves in one-dimensional disordered-systems. Adv. Phys. 43, 461–542 (1994).

    Article  Google Scholar 

  27. Liu, K., Avouris, P., Martel, R. & Hsu, W. K. Electrical transport in doped multiwalled carbon nanotubes. Phys. Rev. B 63, 161404 (2001).

    Article  Google Scholar 

  28. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sidney Davison and Ron Reifenberger for careful reading and Jose Ortega for helping with numerical methods. This work was partially supported by Spanish MCyT under contracts MAT2004-05589-C02-02, MAT2001-00665 and MAT2002-01534 and the European Community IST-2001-38052 and NMP4-CT-2004-500198 grants. B. B. is indebted to MEC (Spain) for a F.P.U. fellowship. Computing time for some of these calculations in the Centro de Computación Científica de la UAM is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gómez-Herrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Navarro, C., Pablo, P., Gómez-Herrero, J. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nature Mater 4, 534–539 (2005). https://doi.org/10.1038/nmat1414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing