Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytoskeletal remodelling and slow dynamics in the living cell

Abstract

The cytoskeleton (CSK) is a crowded network of structural proteins that stabilizes cell shape and drives cell motions. Recent studies on the dynamics of the CSK have established that a wide variety of cell types exhibit rheology in which responses are not tied to any particular relaxation times and are thus scale-free1,2,3,4. Scale-free rheology is often found in a class of materials called soft glasses5, but not all materials expressing scale-free rheology are glassy (see plastics, wood, concrete or some metals for example)6. As such, the extent to which dynamics of the CSK might be regarded as glassy remained an open question. Here we report both forced and spontaneous motions of microbeads tightly bound to the CSK of human muscle cells. Large oscillatory shear fluidized the CSK matrix, which was followed by slow scale-free recovery of rheological properties (aging). Spontaneous bead motions were subdiffusive at short times but superdiffusive at longer times; intermittent motions reflecting nanoscale CSK rearrangements depended on both the approach to kinetic arrest and energy release due to ATP hydrolysis. Aging, intermittency, and approach to kinetic arrest establish a striking analogy between the behaviour of the living CSK and that of inert non-equilibrium systems, including soft glasses, but with important differences that are highly ATP-dependent. These mesoscale dynamics link integrative CSK functions to underlying molecular events, and represent an important intersection of topical issues in condensed matter physics and systems biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aging and rejuvenation in response to applied shear.
Figure 2: Bead position tracked in the plane.
Figure 3: Statistics of spontaneous bead motions.
Figure 4: Physical forces involved in CSK rearrangements.

Similar content being viewed by others

References

  1. Alcaraz, J. et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071–2079 (2003).

    Article  CAS  Google Scholar 

  2. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    Article  CAS  Google Scholar 

  3. Desprat, N., Richert, A., Simeon, J. & Asnacios, A. Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005).

    Article  CAS  Google Scholar 

  4. Lenormand, G., Millet, E., Fabry, B., Butler, J. & Fredberg, J. Linearity and time-scale invariance of the creep function in living cells. J. R. Soc. Interface 1, 91–97 (2004).

    Article  CAS  Google Scholar 

  5. Sollich, P. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58, 738–759 (1998).

    Article  CAS  Google Scholar 

  6. Findley, W. N., Lai, J. S. & Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity (Dover Publications, Mineola, New York, 1989).

    Google Scholar 

  7. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  Google Scholar 

  8. Parisi, G. Brownian motion. Nature 433, 221 (2005).

    Article  CAS  Google Scholar 

  9. Struick, L. C. E. Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Houston, Texas, 1978).

    Google Scholar 

  10. Viasnoff, V. & Lequeux, F. Rejuvenation and overaging in a colloidal glass under shear. Phys. Rev. Lett. 89, 065701 (2002).

    Article  Google Scholar 

  11. Derec, C., Ducouret, G., Ajdari, A. & Lequeux, F. Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles. Phys. Rev. E 67, 061403 (2003).

    Article  Google Scholar 

  12. Ramos, L. & Cipelletti, L. Ultraslow dynamics and stress relaxation in the aging of a soft glassy system. Phys. Rev. Lett. 87, 245503 (2001).

    Article  CAS  Google Scholar 

  13. Cloitre, M., Borrega, R. & Leibler, L. Rheological aging and rejuvenation in microgel pastes. Phys. Rev. Lett. 85, 4819–4822 (2000).

    Article  CAS  Google Scholar 

  14. An, S. S. et al. Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. J. Appl. Physiol. 96, 1701–1713 (2004).

    Article  CAS  Google Scholar 

  15. Kucik, D. F., Elson, E. L. & Sheetz, M. P. Forward transport of glycoproteins on leading lamellopodia in locomoting cells. Nature 340, 315–317 (1989).

    Article  CAS  Google Scholar 

  16. Cipelletti, L. et al. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237–251 (2003).

    Article  CAS  Google Scholar 

  17. Bissig, H., Romer, S., Cipelletti, L., Trappea, V. & Schurtenberger, P. Intermittent dynamics and hyper-aging in dense colloidal gels. Phys. Chem. Comm. 6, 21–23 (2003).

    Google Scholar 

  18. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    Article  CAS  Google Scholar 

  19. Weeks, E. R. & Weitz, D. A. Properties of cage rearrangements observed near the colloidal glass transition. Phys. Rev. Lett. 89, 095704 (2002).

    Article  Google Scholar 

  20. Evans, R. M. L., Cates, M. E. & Sollich, P. Diffusion and rheology in a model of glassy materials. Eur. Phys. J. 10, 705–718 (1999).

    Article  CAS  Google Scholar 

  21. Mason, T. G. & Weitz, D. A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995).

    Article  CAS  Google Scholar 

  22. Lau, A. W. C., Hoffman, B. D., Davies, A., Crocker, J. C. & Lubensky, T. C. Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91, 198101 (2003).

    Article  CAS  Google Scholar 

  23. An, S. S., Laudadio, R. E., Lai, J., Rogers, R. A. & Fredberg, J. J. Stiffness changes in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283, C792–C801 (2002).

    Article  CAS  Google Scholar 

  24. Stamenovic, D., Suki, B., Fabry, B., Wang, N. & Fredberg, J. J. Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J. Appl. Physiol. 96, 1600–1605 (2004).

    Article  Google Scholar 

  25. Kurchan, J. In and out of equilibrium. Nature 433, 222–225 (2005).

    Article  CAS  Google Scholar 

  26. Cugliandolo, L. F., Kurchan, J. & Peliti, L. Energy flow, partial equilibration, and effective temperature in systems with slow dynamics. Phys. Rev. E 55, 3898–3914 (1997).

    Article  CAS  Google Scholar 

  27. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  CAS  Google Scholar 

  28. Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  CAS  Google Scholar 

  29. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  Google Scholar 

  30. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    Article  CAS  Google Scholar 

  31. Noble, D. Modeling the heart–from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    Article  CAS  Google Scholar 

  32. Hu, S. et al. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am. J. Physiol. Cell Physiol. 285, C1082–C1090 (2003).

    Article  CAS  Google Scholar 

  33. Valentine, M. T. et al. Investigating the microenviorement of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64, 061506 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by the National Institutes of Health, grants HL33009. HL59682 and HL65960. We thank Reynold Panettieri for providing cells and Srboljub M. Mijailovich, John C. Crocker and Steven S. An for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Fredberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursac, P., Lenormand, G., Fabry, B. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nature Mater 4, 557–561 (2005). https://doi.org/10.1038/nmat1404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing