Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes

Abstract

Encapsulation of organic molecules in carbon nanotubes has opened a new route for the fabrication of hybrid nanostructures. Here we show that diameter-selective encapsulation of two metallocene compounds bis(cyclopentadienyl) cobalt and bis(ethylcyclopentadienyl) cobalt has been observed in single-walled carbon nanotubes. In particular, bis(cyclopentadienyl) cobalt is observed to fill only nanotubes of one specific diameter. Electron transfer from the cobalt ions to the nanotubes has been directly observed through a change in the charge state of the encapsulated molecules. The filling of the tubes is found to induce a red-shift of the photoluminescence emission, which is attributed to the formation of localized impurity states below the conduction band of the nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM micrographs of CoCp2 and Co(EtCp)2 molecules encapsulated in carbon nanotubes.
Figure 2: EDX and absorption spectra showing the encapsulation of CoCp2 and Co(EtCp)2 molecules.
Figure 3: Comparison of photoluminescence from CoCp2@CNT, Co(EtCp)2@CNT and the reference sample.
Figure 4: Comparison of absorption and Raman spectra.

Similar content being viewed by others

References

  1. Tsang, S. C., Chen, Y. K., Harris, P. J. F. & Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 372, 159–162 (1994).

    Article  CAS  Google Scholar 

  2. Guerret-Plecourt, C., Bouar, Y. L., Lolseau, A. & Pascard, H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372, 761–765 (1994).

    Article  Google Scholar 

  3. Takenobu, T. et al. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nature Mater. 2, 683–688 (2003).

    Article  CAS  Google Scholar 

  4. Lu, J. et al. Amphoteric controllable doping of carbon nanotubes by encapsulation of organic and organometallic molecules. Phys. Rev. Lett. 93, 116804 (2004).

    Article  Google Scholar 

  5. Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002).

    Article  CAS  Google Scholar 

  6. Lee, J. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002).

    Article  CAS  Google Scholar 

  7. Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).

    Article  CAS  Google Scholar 

  8. Weber, J. et al. Electronic structure of metallocene compounds. 3. Comparison of the results of multiple-scattering Xα calculations with various electronic observables of cobaltocene. J. Am. Chem. Soc. 104, 1491–1506 (1982).

    Article  CAS  Google Scholar 

  9. Sohn, Y. S., Hendrickson, D. N. & Gray, H. B. Electronic structure of metallocenes. J. Am. Chem. Soc. 93, 3603–3612 (1971).

    Article  CAS  Google Scholar 

  10. Strano, M. et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003).

    Article  CAS  Google Scholar 

  11. Li, L. J. & Nicholas, R. J. Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes. Nanotechnol. 15, 1844–1847 (2004).

    Article  CAS  Google Scholar 

  12. Kong J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  13. Jhi, S. G., Louie, S. G. & Cohen, M. L. Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 85, 1710–1713 (2000).

    Article  CAS  Google Scholar 

  14. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Article  Google Scholar 

  15. Pedersen, T. G. Variational approach to excitons in carbon nanotubes. Phys. Rev. B 67, 073401 (2003).

    Article  Google Scholar 

  16. Li, L. J., Nicholas, R. J., Deacon, R. S. & Shields, P. A. Chirality assignment of single-walled carbon nanotubes with strain. Phys. Rev. Lett. 93, 156104 (2004).

    Article  Google Scholar 

  17. Williams, E. W. & Bebb, H. B. in Photoluminescence II: Gallium Arsenide in Semiconductors and Semimetals Vol. 8 (ed. Willardson, R. K. & Beer, A. C.) 321–392 (Academic Press, New York, 1972).

    Google Scholar 

  18. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  CAS  Google Scholar 

  19. Yang, L., Anantram, H. P., Han, J. & Lu, J. P. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B 60, 13874–13878 (1999).

    Article  CAS  Google Scholar 

  20. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  21. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge with thanks the support from C. Pears and D.W. Hsu for the provision of the ultracentrifuge facilities. L.J.L. would thank the Swire Group for financial support. A.N.K. thanks the funding from DTI, EPSRC, Hitachi Europe and The Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Nicholas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures 1 - 6 (PDF 2912 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LJ., Khlobystov, A., Wiltshire, J. et al. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Mater 4, 481–485 (2005). https://doi.org/10.1038/nmat1396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing