Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-conserving carrier recombination in conjugated polymers

Abstract

The ultimate efficiency of polymer light-emitting diodes is limited by the fraction of charges recombining in the molecular singlet manifold. We address the question of whether this fraction can principally exceed the fundamental limit set down by spin statistics, which requires the possibility of spin changes during exciton formation. Sensitized phosphorescence at 4–300 K enables a direct quantification of spin conversion in coulombically bound electron–hole pairs, the precursors to exciton formation. These are stabilized in external electric fields over times relevant to carrier transport, capture and recombination in devices. No interconversion of exciton intermediates between singlet and triplet configurations is observed. Static magnetic fields are equally unable to induce spin mixing in electroluminescence. Our observations imply substantial exchange splitting at all times during carrier capture. Prior statements regarding increased singlet yields above 25% merely on the basis of higher singlet than triplet formation rates should therefore be re-examined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of EL and PL properties of the hydrocarbon conjugated polymer PhLPPP.
Figure 2: Transient EL intensity of a PhLPPP LED.
Figure 3: Storage of singlet excitons in external reverse-bias electric fields.
Figure 4: Field modulated recombination of optically generated singlet and triplet charge carrier pairs.
Figure 5: Effect of strong magnetic fields on fluorescence and phosphorescence under electrical excitation at 100 K.

Similar content being viewed by others

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Cao, Y., Parker, I. D., Yu, G., Zhang, C. & Heeger, A. J. Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397, 414–417 (1999).

    Article  CAS  Google Scholar 

  3. Wohlgenannt, M., Tandon, K., Mazumdar, S., Ramasesha, S. & Vardeny, Z. V. Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers. Nature 409, 494–497 (2001).

    Article  CAS  Google Scholar 

  4. Shuai, Z., Beljonne, D., Silbey, R. J. & Brédas, J. L. Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes. Phys. Rev. Lett. 84, 131–134 (2000).

    Article  CAS  Google Scholar 

  5. Wilson, J. S. et al. Spin-dependent exciton formation in pi-conjugated compounds. Nature 413, 828–831 (2001).

    Article  CAS  Google Scholar 

  6. Dhoot, A. S. & Greenham, N. C. Triplet formation in polyfluorene devices. Adv. Mater. 14, 1834–1837 (2002).

    Article  CAS  Google Scholar 

  7. Wohlgenannt, M. & Vardeny, Z. V. Spin-dependent exciton formation rates in pi-conjugated materials. J. Phys. Cond. Matter 15, R83–R107 (2003).

    Article  CAS  Google Scholar 

  8. Kadashchuk, A. et al. Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers. Phys. Rev. Lett. 93, 066803 (2004).

    Article  CAS  Google Scholar 

  9. Wohlgenannt, M., Jiang, X. M., Vardeny, Z. V. & Janssen, R. A. J. Conjugation-length dependence of spin-dependent exciton formation rates in π-conjugated oligomers and polymers. Phys. Rev. Lett. 88, 197401 (2002).

    Article  CAS  Google Scholar 

  10. Tandon, K., Ramasesha, S. & Mazumdar, S. Electron correlation effects in electron-hole recombination in organic light-emitting diodes. Phys. Rev. B 67, 045109 (2003).

    Article  Google Scholar 

  11. Ho, P. K. H. et al. Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404, 481–484 (2000).

    Article  CAS  Google Scholar 

  12. Virgili, T. et al. Understanding fundamental processes in poly(9,9-dioctylfluorene) light-emitting diodes via ultrafast electric-field-assisted pump-probe spectroscopy. Phys. Rev. Lett. 90, 247402 (2003).

    Article  CAS  Google Scholar 

  13. Karabunarliev, S. & Bittner, E. R. Spin-dependent electron-hole capture kinetics in luminescent conjugated polymers. Phys. Rev. Lett. 90, 057402 (2003).

    Article  Google Scholar 

  14. Beljonne, D., Ye, A., Shuai, Z. & Brédas, J. L. Chain-length dependence of singlet and triplet exciton formation rates in organic light-emitting diodes. Adv. Funct. Mater. 14, 684–692 (2004).

    Article  CAS  Google Scholar 

  15. Baldo, M. A., O'Brien, D. F., Thompson, M. E. & Forrest, S. R. Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 14422–14428 (1999).

    Article  CAS  Google Scholar 

  16. Segal, M., Baldo, M. A., Holmes, R. J., Forrest, S. R. & Soos, Z. G. Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68, 075211 (2003).

    Article  Google Scholar 

  17. Barford, W. Theory of singlet exciton yield in light-emitting polymers. Phys. Rev. B 70, 205204 (2004).

    Article  Google Scholar 

  18. Frankevich, E. L. et al. Polaron-pair generation in poly(phenylene-vinylene). Phys. Rev. B 46, 9320–9324 (1992).

    Article  CAS  Google Scholar 

  19. Lupton, J. M. et al. Intrinsic room-temperature electrophosphorescence from a pi-conjugated polymer. Phys. Rev. Lett. 89, 167401 (2002).

    Article  CAS  Google Scholar 

  20. Reufer, M., Schindler, F., Patil, S., Scherf, U. & Lupton, J. M. Crossover from diffusion to annihilation limited phosphorescence in conjugated polymers. Chem. Phys. Lett. 381, 60–66 (2003).

    Article  CAS  Google Scholar 

  21. Romanovskii, Y. V. et al. Phosphorescence of pi-conjugated oligomers and polymers. Phys. Rev. Lett. 84, 1027–1030 (2000).

    Article  CAS  Google Scholar 

  22. Gulbinas, V. et al. Dynamics of the electric field-assisted charge carrier photogeneration in ladder-type poly(para-phenylene) at a low excitation intensity. Phys. Rev. Lett. 89, 107401 (2002).

    Article  Google Scholar 

  23. Gerhard, A. & Bässler, H. Delayed fluorescence of a poly (p-phenylenevinylene) derivative: Triplet-triplet annihilation versus geminate pair recombination. J. Chem. Phys. 117, 7350–7356 (2002).

    Article  CAS  Google Scholar 

  24. Arkhipov, V. I. & Bässler, H. Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Phys. Status Solidi A 201, 1152–1187 (2004).

    Article  CAS  Google Scholar 

  25. Schweitzer, B., Arkhipov, V. I. & Bässler, H. Field-induced delayed photoluminescence in a conjugated polymer. Chem. Phys. Lett. 304, 365–370 (1999).

    Article  CAS  Google Scholar 

  26. Graupner, W. et al. Direct observation of ultrafast field-induced charge generation in ladder-type poly(para-phenylene). Phys. Rev. Lett. 81, 3259–3262 (1998).

    Article  CAS  Google Scholar 

  27. Miranda, P. B., Moses, D. & Heeger, A. J. Ultrafast photogeneration of charged polarons in conjugated polymers. Phys. Rev. B 64, 081201 (2001).

    Article  Google Scholar 

  28. Hendry, E., Schins, J. M., Candeias, L. P., Siebbeles, L. D. A. & Bonn, M. Efficiency of exciton and charge carrier photogeneration in a semiconducting polymer. Phys. Rev. Lett. 92, 196601 (2004).

    Article  CAS  Google Scholar 

  29. Krinichnyi, V. I. 2-mm waveband electron paramagnetic resonance spectroscopy of conducting polymers. Synth. Met. 108, 173–222 (2000).

    Article  CAS  Google Scholar 

  30. Frankevich, E., Mü ller, J. G. & Lemmer, U. Interaction of intermediate excited states and formation of free charge carriers under laser excitation of a conjugated polymer. Chem. Phys. 285, 13–29 (2002).

    Article  CAS  Google Scholar 

  31. Wohlgenannt, M., Jiang, X. M. & Vardeny, Z. V. Confined and delocalized polarons in pi-conjugated oligomers and polymers: A study of the effective conjugation length. Phys. Rev. B 69, 241204 (2004).

    Article  Google Scholar 

  32. Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    Article  CAS  Google Scholar 

  33. Kalinowski, J., Cocchi, M., Virgili, D., Di Marco, P. & Fattori, V. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem. Phys. Lett. 380, 710–715 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Satish Patil for the synthesis of PhLPPP and would like to thank A. Kadashchuk for making a preprint of ref. 8 available as well as Peter Gilch for insightful discussions. Technical support by W. Stadler and A. Helfrich is gratefully acknowledged, as is financial assistance by the Bundesministerium für Bildung und Forschung through the organic laser diode collaboration, OLAS, the Deutsche Forschungsgemeinschaft through a Gottfried Wilhelm Leibniz award, and the EU through the Physics of Hybrid Organic–Inorganic Heterostructures for Photonics and Telecommunications research training network HYTEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lupton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 6, 7, 8 and 9 (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reufer, M., Walter, M., Lagoudakis, P. et al. Spin-conserving carrier recombination in conjugated polymers. Nature Mater 4, 340–346 (2005). https://doi.org/10.1038/nmat1354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing