Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled microdevices driven by muscle

Abstract

Current procedures for manual extraction of mature muscle tissue in micromechanical structures are time consuming and can damage the living components. To overcome these limitations, we have devised a new system for assembling muscle-powered microdevices based on judicious manipulations of materials phases and interfaces. In this system, individual cells grow and self-assemble into muscle bundles that are integrated with micromechanical structures and can be controllably released to enable free movement. Having realized such an assembly with cardiomyocytes we demonstrate two potential applications: a force transducer able to characterize in situ the mechanical properties of muscle and a self-assembled hybrid (biotic/abiotic) microdevice that moves as a consequence of collective cooperative contraction of muscle bundles. Because the fabrication of silicon microdevices is independent of the subsequent assembly of muscle cells, this system is highly versatile and may lead to the integration of cells and tissues with a variety of other microstructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the fabrication processes for the self-assembled muscle-MEMS system.
Figure 2: SEM Images of a cantilever array.
Figure 3: Digitized video images of the released states of a single-muscle cell bundle attached to a 400-μm-long cantilever.
Figure 4: Diagram showing the fabrication of the self-assembled microdevices powered by muscle.
Figure 5: Microscope images showing the sequential movement of the microdevice during one step.

Similar content being viewed by others

References

  1. Soong, R. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  CAS  Google Scholar 

  2. Bachand, G. & Montemagno, C. Constructing organic/inorganic NEMS device powered by biomolecular motors. Biomed. Microdevices 2, 179–184 (2000).

    Article  CAS  Google Scholar 

  3. Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J 10, 2110–2116 (2004).

    Article  CAS  Google Scholar 

  4. Shu, D., Huang, L. P., Hoeprich, S. & Guo, P. Construction of phi 29 DNA-packing RNA monomers, dimers, and trimers with variables sizes and shapes as potential parts for nanodevices. J. Nanosci. Nanotechnol. 3, 295–302 (2003).

    Article  CAS  Google Scholar 

  5. West, J. B. Physiological Basis of Medical Practice 12th edn (Williams & Wilkins, Baltimore, USA, 1990).

    Google Scholar 

  6. Herzog, W. Skeletal Muscle Mechanics (Wiley, New York, USA, 2000).

    Google Scholar 

  7. Lin, G., Pister, K. S. J. & Roos, K. P. Surface micromachined polysilicon heart cell force transducer. J. Microelectromech. Syst. 9, 9–17 (2000).

    Article  CAS  Google Scholar 

  8. Lin, G., Palmer, R. E., Pister, K. S. J. & Roos, K. P. Miniature heart cell force transducer system implemented in MEMS technology. IEEE Trans. Biomed. Eng. 48, 996–1006 (2001).

    Article  CAS  Google Scholar 

  9. McMahon, D. et al. C2C12 cells: biophysical, biochemical, and immunocytochemical properties. Am. Physiol. Soc. 35, C1795–C1802 (1994).

    Article  Google Scholar 

  10. van der Velden, J. et al. Force production in mechanically isolated cardiac myocyte from human ventricular muscle tissue. Cardiovasc. Res. 38, 414–423 (1998).

    Article  CAS  Google Scholar 

  11. Tashe, E., Meyhofer, E. & Brenner, B. A force transducer for measuring mechanical properties of single cardiac myocytes. Am. J. Physiol. 277, H2400 (1999).

    Google Scholar 

  12. Folch, A. & Toner, M. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2, 227–256 (2000).

    Article  CAS  Google Scholar 

  13. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E. & Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomater. 20, 2363–2376 (1999).

    Article  CAS  Google Scholar 

  14. Balaban, N. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–473 (2001).

    Article  CAS  Google Scholar 

  15. Beningo, K., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesion are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–887 (2001).

    Article  CAS  Google Scholar 

  16. Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    Article  CAS  Google Scholar 

  17. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  18. MacDonald, N. C. SCREAM Microelectromechanical system. Microelectronic Eng. 32, 49–73 (1996).

    Article  CAS  Google Scholar 

  19. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A. & Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomater. 23, 561–567 (2002).

    Article  CAS  Google Scholar 

  20. Okano, T., Yamada, N., Sakai, H. & Sakurai, Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res. 27, 1243–1251 (1993).

    Article  CAS  Google Scholar 

  21. Yamato, M. et al. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 7, 473–480 (2001).

    Article  CAS  Google Scholar 

  22. Chen, G., Ito, Y. & Imanishi, Y. Regulation of growth and adhesion of cultured cells by insulin conjugated with thermoresponsive polymers. Biotechnol. Bioeng. 53, 339–344 (1997).

    Article  CAS  Google Scholar 

  23. Shimizu, T., Yamato, M., Kikuchi, A. & Okano, T. Two-dimensional manipulation of cardiac myocytes sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7, 141–151 (2001).

    Article  CAS  Google Scholar 

  24. Hu, Z., Chen, Y., Wang, C., Zheng, Y. & Li, Y. Polymer gels with engineered environmentally responsive surface patterns. Nature 393, 149–152 (1998).

    Article  CAS  Google Scholar 

  25. Hollar, S., Flynn, A., Bergbreiter, S. & Pister, K. S. J. in Hilton Head 2002 Workshop (Transducer Research Foundation, Hilton Head Island, South Carolina, 2002).

    Google Scholar 

  26. Fearing, R. S. in IEEE Int. Conf. Robotics and Automation-Tutorial on Micro Mechanics and Micro Robotics (Leuven, Belgium,1998).

    Google Scholar 

  27. McMahon, A. T. & Bonner, J. T. On Size and Life (Scientific American, New York, USA, 1983).

    Google Scholar 

  28. Xi, J., Dy, E., Hung, M.-T. & Montemagno, C. in Nanotech 2004: NSTI Nanotechnology Conference and Trade Show 3–6 (Boston, USA, 2004).

    Google Scholar 

  29. Haddad, S. A. P., Gieltjes, S., Houben, R. P. M. & Serdijn, W. A. in Proc. IEEE International Symposium on Circuits and Systems (Bangkok, Thailand, 2003).

    Google Scholar 

  30. Hibbeler, R. C. Mechanics of Materials (Macmillan, London, 1991).

    Google Scholar 

  31. Ross, R. S. et al. ß1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circulation Res. 82, 1160–1172 (1998).

    Article  CAS  Google Scholar 

  32. Sen, A., Dunnmon, P., Henderson, S. A., Gerard, R. D. & Chien, K. R. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J. Biol. Chem. 263, 19132–19136 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert S. Ross, Jane Chen and Shane Antrobus at UCLA for the cells and Cassanna Ouellette for the graphic images. We thank Neves Hercules, Benjamin M. Wu, Chinh-Ming Ho, Toshikazu Hamasaki and Earl Homsher for suggestions of revising the paper. Supporter by Center for Cell Mimetic Space Exploration (CMISE), a NASA University Research, Engineering and Technology Institute (URETI), under award number NCC 2-1364.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Xi or Carlo D. Montemagno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, J., Schmidt, J. & Montemagno, C. Self-assembled microdevices driven by muscle. Nature Mater 4, 180–184 (2005). https://doi.org/10.1038/nmat1308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing