Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions

Abstract

The tunnel magnetoresistance (TMR) effect in magnetic tunnel junctions (MTJs)1,2 is the key to developing magnetoresistive random-access-memory (MRAM), magnetic sensors and novel programmable logic devices3,4,5. Conventional MTJs with an amorphous aluminium oxide tunnel barrier, which have been extensively studied for device applications, exhibit a magnetoresistance ratio up to 70% at room temperature6. This low magnetoresistance seriously limits the feasibility of spintronics devices. Here, we report a giant MR ratio up to 180% at room temperature in single-crystal Fe/MgO/Fe MTJs. The origin of this enormous TMR effect is coherent spin-polarized tunnelling, where the symmetry of electron wave functions plays an important role. Moreover, we observed that their tunnel magnetoresistance oscillates as a function of tunnel barrier thickness, indicating that coherency of wave functions is conserved across the tunnel barrier. The coherent TMR effect is a key to making spintronic devices with novel quantum-mechanical functions, and to developing gigabit-scale MRAM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of a single-crystal MTJ with the Fe(001)/MgO(001)(1.8 nm)/Fe(001) structure.
Figure 2: Tunnel magnetoresistance of Fe(001)/MgO(001)/Fe(001) junctions.
Figure 3: Bias voltage—dependence of the TMR effect.

Similar content being viewed by others

References

  1. Moodera, J. S. et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  2. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–234 (1995).

    Article  CAS  Google Scholar 

  3. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  4. Ney, A. Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003).

    Article  CAS  Google Scholar 

  5. Moodera, J. S. & LeClair, P. A quantum leap. Nature Mater. 2, 707–708 (2003).

    Article  CAS  Google Scholar 

  6. Wang, D., Nordman, C., Daughton, J. M., Qian, Z. & Fink, J. 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40, 2269–2271 (2004).

    Article  CAS  Google Scholar 

  7. Butler, W. H., Zhang X. -G., Schulthess, T. C. & Maclaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  8. Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403R (2001).

    Article  Google Scholar 

  9. Wulfhekel, W. et al. Single-crystal magnetotunnel junctions. Appl. Phys. Lett. 78, 509–511 (2001).

    Article  CAS  Google Scholar 

  10. Bowen, M. et al. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001). Appl. Phys. Lett. 79, 1655–1657 (2001).

    Article  CAS  Google Scholar 

  11. Faure-Vincent, J. et al. High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions. Appl. Phys. Lett. 82, 4507–4509 (2003).

    Article  CAS  Google Scholar 

  12. Mitani, S., Moriyama, T. & Takanashi, K. Fe/MgO/FeCo(100) epitaxial magnetic tunnel junctions prepared by using in situ plasma oxidation. J. Appl. Phys. 93, 8041–8043 (2003).

    Article  CAS  Google Scholar 

  13. Yuasa, S., Fukushima, A., Nagahama, T., Ando, K. & Suzuki, Y. High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling. Jpn J. Appl. Phys. 43, L588–L590 (2004).

    Article  CAS  Google Scholar 

  14. Yuasa, S. et al. Magnetic tunnel junctions with single-crystal electrodes: a crystal anisotropy of tunnel magneto-resistance. Europhys. Lett. 52, 344–350 (2000).

    Article  Google Scholar 

  15. Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581–2590 (1963).

    Article  Google Scholar 

  16. Gibson, A. & Haydock, R. Stability of vacancy defects in MgO: The role of charge neutrality. Phys. Rev. B 50, 2582–2592 (1994).

    Article  CAS  Google Scholar 

  17. Saito, Y. et al. Correlation between barrier width, barrier height, and dc bias voltage dependences on the magnetoresistance ratio in Ir-Mn exchange biased single and double tunnel junctions. Jpn J. Appl. Phys. 39, L1035–L1038 (2000).

    Article  CAS  Google Scholar 

  18. Vassent, J. L., Dynna, M., Marty, A., Gilles, B. & Patrat, G. A study on growth and the relaxation of elastic strain in MgO on Fe(001). J. Appl. Phys. 80, 5727–5735 (1996).

    Article  CAS  Google Scholar 

  19. You, C. Y. & Bader, S. D. Prediction of switching/rotation of the magnetization direction with applied voltage in a controllable interlayer exchange coupled system. J. Magn. Magn. Mater. 195, 488–500 (1999).

    Article  CAS  Google Scholar 

  20. Yu, J. H., Lee, H. M., Ando, Y. & Miyazaki, T. Electron transport properties in magnetic tunnel junctions with epitaxial NiFe (111) ferromagnetic bottom electrodes. Appl. Phys. Lett. 82, 4735–4737 (2003).

    Article  CAS  Google Scholar 

  21. Inaba, N. & Futamoto, M. Magnetic and crystallographic properties of Co-Cr-Pt longitudinal media prepared on MgO seedlayers deposited by ECR sputtering. IEEE Trans. Magn. 36, 2372–2374 (2000).

    Article  CAS  Google Scholar 

  22. Yuasa, S., Nagahama, T. & Suzuki, Y. spin-polarized resonant tunneling in magnetic tunnel junctions. Science 297, 234–237 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Yamamoto, T. Katayama and Y. Yokoyama for their assistance with the experiments, and C. M. Boubeta, E. Tamura and H. Itoh for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Yuasa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuasa, S., Nagahama, T., Fukushima, A. et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater 3, 868–871 (2004). https://doi.org/10.1038/nmat1257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing