Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Flash welding of conducting polymer nanofibres

Abstract

The absorption of light by a material generates heat through non-radiative energy dissipation and exothermic photochemical reactions1. In nanostructured materials, the heat generated through photothermal processes will be confined within the individual nanostructures when heat transfer to neighbouring nanostructures and the environment is slow. This leads to unprecedented photothermal effects that cannot be observed in bulk materials, especially when a strong, pulsed light source is used2,3. Here we demonstrate an enhanced photothermal phenomenon with conducting polymer nanofibres in which a camera flash causes instantaneous welding. Under flash irradiation, polyaniline nanofibres 'melt' to form a smooth and continuous film from an originally random network of nanofibres. This photothermal effect can be used to form asymmetric nanofibre films, to melt-blend polymer–polymer nanocomposites rapidly and to photo-pattern polymer nanofibre films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical TEM images showing polyaniline nanofibres before and after exposure to a camera flash.
Figure 2: A polyaniline nanofibre film before and after welding.
Figure 3: SEM image showing the cross-section of an asymmetric free-standing nanofibre film produced by flash welding.
Figure 4: Optical microscope images showing that flash welding through a copper grid (a) reproduces the grid pattern on a polyaniline nanofibre film (b).
Figure 5: SEM images showing a mixture of polyaniline nanofibres and polystyrene spheres before (a) and after (b) flash welding.

Similar content being viewed by others

References

  1. Rosencwaig, A. Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1990).

    Google Scholar 

  2. Ajayan, P. M., Ramanath, G., Terrones, M. & Ebbesen, T. W. Igniting nanotubes with a flash: Response. Science 297, 192–193 (2002).

    Article  CAS  Google Scholar 

  3. Wang, N., Yao, B. D., Chan, Y. F. & Zhang, X. Y. Enhanced photothermal effect in Si nanowires. Nano Lett. 3, 475–477 (2003).

    Article  CAS  Google Scholar 

  4. MacDiarmid, A. G. Polyaniline and polypyrrole: where are we headed? Synth. Met. 84, 27–34 (1997).

    Article  CAS  Google Scholar 

  5. Huang, W. S., Humphrey, B. D. & MacDiarmid, A. G. Polyaniline, a novel conducting polymer. J. Chem. Soc. Faraday Trans. 82, 2385 (1986).

    Article  CAS  Google Scholar 

  6. De Albuquerque, J. E., Melo, W. L. B. & Faria, R. M. Determination of physical parameters of conducting polymers by photothermal spectroscopies. Rev. Sci. Instrum. 74, 306–308 (2003).

    Article  CAS  Google Scholar 

  7. De Albuquerque, J. E., Melo, W. L. B. & Faria, R. M. Photopyroelectric spectroscopy of polyaniline films. J. Polym. Sci. B 38, 1294–1300 (2000).

    Article  CAS  Google Scholar 

  8. Toyoda, T. & Nakamura, H. Photoacoustic-spectroscopy of polyaniline films. Jpn J. Appl. Phys. 34, 2907–2910 (1995).

    Article  CAS  Google Scholar 

  9. Huang, J. X. & Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851–855 (2004).

    Article  CAS  Google Scholar 

  10. Huang, J. X., Virji, S., Weiller, B. H. & Kaner, R. B. Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc. 125, 314–315 (2003).

    Article  CAS  Google Scholar 

  11. Ding, L. L., Wang, X. W. & Gregory, R. V. Thermal properties of chemically synthesized polyaniline (EB) powder. Synth. Met. 104, 73–78 (1999).

    Article  CAS  Google Scholar 

  12. Pandey, S. S., Gerard, M., Sharma, A. L. & Malhotra, B. D. Thermal analysis of chemically synthesized polyemeraldine base. J. Appl. Polym. Sci. 75, 149–155 (2000).

    Article  CAS  Google Scholar 

  13. Wei, Y. & Hsueh, K. F. Thermal-analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity. J. Polym. Sci. A 27, 4351–4363 (1989).

    Article  CAS  Google Scholar 

  14. Mathew, R., Mattes, B. R. & Espe, M. P. A solid state NMR characterization of cross-linked polyaniline powder. Synth. Met. 131, 141–147 (2002).

    Article  CAS  Google Scholar 

  15. Huang, S. C., Ball, I. J. & Kaner, R. B. Polyaniline membranes for pervaporation of carboxylic acids and water. Macromolecules 31, 5456–5464 (1998).

    Article  CAS  Google Scholar 

  16. Nunes, S. P. & Peinemann, K. -V. Membrane Technology in the Chemical Industry (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  17. Sansinena, J. M., Gao, J. B. & Wang, H. L. High-performance, monolithic polyaniline electrochemical actuators. Adv. Funct. Mater. 13, 703–709 (2003).

    Article  CAS  Google Scholar 

  18. Wang, H. L., Gao, J. B., Sansinena, J. M. & McCarthy, P. Fabrication and characterization of polyaniline monolithic actuators based on a novel configuration: integrally skinned asymmetric membrane. Chem. Mater. 14, 2546–2552 (2002).

    Article  CAS  Google Scholar 

  19. Gao, J. B., Sansinena, J. M. & Wang, H. L. Tunable polyaniline chemical actuators. Chem. Mater. 15, 2411–2418 (2003).

    Article  CAS  Google Scholar 

  20. Gao, J. B., Sansinena, J. M. & Wang, H. L. Chemical vapor driven polyaniline sensor/actuators. Synth. Met. 135, 809–810 (2003).

    Article  Google Scholar 

  21. Rodrigues, P. C., de Souza, G. P., Neto, J. D. D. & Akcelrud, L. Thermal treatment and dynamic mechanical thermal properties of polyaniline. Polymer 43, 5493–5499 (2002).

    Article  CAS  Google Scholar 

  22. Kieffel, Y., Travers, J. P., Ermolieff, A. & Rouchon, D. Thermal aging of undoped polyaniline: effect of chemical degradation on electrical properties. J. Appl. Polym. Sci. 86, 395–404 (2002).

    Article  CAS  Google Scholar 

  23. Tan, H. H., Neoh, K. G., Liu, F. T., Kocherginsky, N. & Kang, E. T. Crosslinking and its effects on polyaniline films. J. Appl. Polym. Sci. 80, 1–9 (2001).

    Article  CAS  Google Scholar 

  24. Liu, G. & Freund, M. S. New approach for the controlled cross-linking of polyaniline: synthesis and characterization. Macromolecules 30, 5660–5665 (1997).

    Article  CAS  Google Scholar 

  25. Conklin, J. A., Huang, S. C., Huang, S. M., Wen, T. L. & Kaner, R. B. Thermal properties of polyaniline and poly(aniline-co-o-ethylaniline). Macromolecules 28, 6522–6527 (1995).

    Article  CAS  Google Scholar 

  26. Smits, J., Wincheski, B., Namkung, M., Crooks, R. & Louie, R. Response of Fe powder, purified and as-produced HiPco single-walled carbon nanotubes to flash exposure. Mater. Sci. Eng. A 358, 384–389 (2003).

    Article  Google Scholar 

  27. Braidy, N., Botton, G. A. & Adronov, A. Oxidation of Fe nanoparticles embedded in single-walled carbon nanotubes by exposure to a bright flash of white light. Nano Lett. 2, 1277–1280 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.-W. Chu for help with FTIR measurements. We acknowledge the financial and program support of the Microelectronics Advanced Research Corporation (MARCO) and its Focus Center on Function Engineered NanoArchitectonics (FENA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Kaner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Kaner, R. Flash welding of conducting polymer nanofibres. Nature Mater 3, 783–786 (2004). https://doi.org/10.1038/nmat1242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing