Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bond- versus site-centred ordering and possible ferroelectricity in manganites

Abstract

Transition metal oxides with a perovskite-type structure constitute a large group of compounds with interesting properties. Among them are materials such as the prototypical ferroelectric system BaTiO3, colossal magnetoresistance manganites and the high-Tc superconductors. Hundreds of these compounds are magnetic1, and hundreds of others are ferroelectric2, but these properties very seldom coexist. Compounds with an interdependence of magnetism and ferroelectricity could be very useful: they would open up a plethora of new applications, such as switching of magnetic memory elements by electric fields. Here, we report on a possible way to avoid this incompatibility, and show that in charge-ordered and orbitally ordered perovskites it is possible to make use of the coupling between magnetic and charge ordering to obtain ferroelectric magnets. In particular, in manganites that are less than half doped there is a type of charge ordering that is intermediate between site-centred and bond-centred. Such a state breaks inversion symmetry and is predicted to be magnetic and ferroelectric.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three types of charge ordering.
Figure 2: Concomitant magnetic order of the three charge-ordered phases in Fig. 1.
Figure 4: Different phases and charge disproportionation in manganites for doping concentrations x around 0.5.
Figure 3: Schematic representation of the orbital order in the three charge-ordered phases.

Similar content being viewed by others

References

  1. Goodenough, J. B. & Longo, J. M. Landolt-Boernstein, Numerical Data and Functional Relationships in Science and Technology New Series Vol. III.4, 126 (Springer, Berlin, 1970).

    Google Scholar 

  2. Adachi, M. et al. Landolt-Boernstein, Numerical Data and Functional Relationships in Science and Technology New Series Vol. 16, 45 (Springer, Berlin, 1970).

    Google Scholar 

  3. Khomskii, D. I. Magnetism and ferroelectricity: why do they so seldom coexist? Bull. Am. Phys. Soc. C21.002 (2001).

  4. Hill, N. A. Density functional studies of multiferroic magnetoelectric. Annu. Rev. Mater. Res. 32, 1–37 (2002).

    Article  CAS  Google Scholar 

  5. Cohen, R. E. Origin of ferroelectricity in oxide ferroelectrics and the difference in ferroelectric behavior of BaTiO3 and PbTiO3 . Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  6. Seshadri, R. & Hill, N. A. Visualizing the role of Bi 6s 'lone pairs' in the off-center distortion in ferromagnetic BiMnO3 . Chem. Mater. 13, 1892–2899 (2001).

    Article  Google Scholar 

  7. van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).

    Article  CAS  Google Scholar 

  8. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  9. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic field. Nature 429, 392–394 (2004).

    Article  CAS  Google Scholar 

  10. Loudon, J. C. et al. Weak charge-lattice coupling requires reinterpretation of stripes of charge order in (La,Ca)MnO3 . cond-mat/0308581 (2003).

  11. Wollan, E. O. & Koeler, W. C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds La(1−x)CaxMnO3 . Phys. Rev. 100, 545–563 (1955).

    Article  CAS  Google Scholar 

  12. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites La, M(II). MnO3 . Phys. Rev. 100, 564–573 (1955).

    Article  CAS  Google Scholar 

  13. Jirak, Z. et al. Neutron diffraction study of Pr1−xCaxMnO3 perovskites. J. Magn. Magn. Mater. 53, 153–166 (1985).

    Article  CAS  Google Scholar 

  14. Radaelli, P. G. et al. Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3 . Phys. Rev. B 55, 3015–3023 (1997).

    Article  CAS  Google Scholar 

  15. Grenier, S. et al. Resonant x-ray diffraction of the magnetoresistant perovskite Pr0.6Ca0.4MnO3 . Phys. Rev. B 69, 134419 (2004).

    Article  Google Scholar 

  16. Daoud-Aladine, A., Rodriguez-Carvajal, J., Pinsard-Gaudart, L., Fernandez-Diaz, M. T. & Revcolevschi, A. Zener polarons in half-doped manganites. Phys. Rev. Lett. 89, 97205 (2002).

    Article  CAS  Google Scholar 

  17. Ferrari, V., Towler, M. & Littlewood, P. B. Oxygen stripes in La0.5Ca0.5MnO3 from ab initio calculations. Phys. Rev. Lett. 91, 227202 (2003).

    Article  CAS  Google Scholar 

  18. Zheng, G. & Patterson, C. H. Ferromagnetic polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3 . Phys. Rev. B 67, 220404 (2003).

    Article  Google Scholar 

  19. Shakhmatov, V. S., Plakida, N. M. & Tonchev, N. S. Orbital phase transition in Pr1−xCaxMnO3 . JETP Lett. 77, 18 (2003).

    Article  Google Scholar 

  20. van den Brink, J. & Khomskii, D. Double exchange via degenerate orbitals, Phys. Rev. Lett. 82, 1016–1019 (1999).

    Article  CAS  Google Scholar 

  21. de Gennes, P. G. Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154 (1960).

    Article  CAS  Google Scholar 

  22. van den Brink, J., Khaliullin, G. & Khomskii, D. Charge and orbital order in half-doped manganites. Phys. Rev. Lett. 83, 5118–5121 (1999).

    Article  CAS  Google Scholar 

  23. Jardon, C. et al. Experimental study of charge ordering transition in Pr0.67Ca0.33MnO3 . J. Magn. Magn. Mater. 196, 475 (1999).

    Article  Google Scholar 

  24. Mercone, S. et al. Anomaly in the dielectric response at the charge orbital ordering transition of crystalline Pr0.67Ca0.33MnO3 . Phys. Rev. B 69, 174433 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. A. Sawatzky and J. Zaanen for discussions. This work was supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO) and the Deutsche Forschungsgemeinschaft via SFB 608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen van den Brink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, D., van den Brink, J. & Khomskii, D. Bond- versus site-centred ordering and possible ferroelectricity in manganites. Nature Mater 3, 853–856 (2004). https://doi.org/10.1038/nmat1236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing