Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitaxial growth of InP nanowires on germanium

Abstract

The growth of III–V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties1,2,3 with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of III–V with group IV semiconductors4,5,6. Here we demonstrate the principle of epitaxial growth of III–V nanowires on a group IV substrate. We have grown InP nanowires on germanium substrates by a vapour–liquid–solid7 method. Although the crystal lattice mismatch is large (3.7%), the as-grown wires are monocrystalline and virtually free of dislocations. X-ray diffraction unambiguously demonstrates the heteroepitaxial growth of the nanowires. In addition, we show that a low-resistance electrical contact can be obtained between the wires and the substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscopy images of two samples with InP nanowires grown on Ge(111).
Figure 2: The crystallographic relation between the InP wires and the Ge substrate studied by X-ray diffraction.
Figure 3: TEM images of an InP wire on a germanium substrate.
Figure 4: Transport measurements through an epitaxially grown nanowire by means of an AFM.

Similar content being viewed by others

References

  1. Berg, A.A. & Dean, P.J. Light-Emitting Diodes (Clarendon, Oxford, 1976).

    Google Scholar 

  2. Nguyen, L.D., Larson, L.E. & Mishra, U.K. Ultra-high speed modulation-doped field-effect transistor. A tutorial review. Proc. IEEE 80, 494–518 (1992).

    Article  Google Scholar 

  3. Eisenbeiser, K., Huang, J.-H., Salih, A., Hadizad, P. & Pitts, B. Manufacturable GaAs VFET for power switching applications. IEEE Elec. Dev. Lett. 21, 144–145 (2000).

    Article  CAS  Google Scholar 

  4. Krost, A., Heinrichsdorf, F. & Bimberg, D. InP on Si(111): Accomodation of lattice mismatch and structural properties. Appl. Phys. Lett. 64, 769–771 (1994).

    Article  CAS  Google Scholar 

  5. Carlin, J.A., Ringel, S.A., Fitzgerald, E.A., Bulsara, M. & Keyes, B.M. Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates. Appl. Phys. Lett. 76, 1884–1886 (2000).

    Article  CAS  Google Scholar 

  6. Shichijo, H., Matyi, R., Taddiken, A.H. & Kao, Y.C. Monolithic integration for co-integration of GaAs MESFET and silicon CMOS devices and circuits. Trans. IEEE Elec. Dev. 37, 548–555 (1990).

    Article  CAS  Google Scholar 

  7. Wagner, R.S. & Ellis, W.C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  8. Bjrk, M.T. et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002).

    Article  Google Scholar 

  9. Wu, Y., Fan, R. & Yang, P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    Article  CAS  Google Scholar 

  10. Ertekin, E., Greaney, P.A., Sands, T.D. & Chrzan, D.C. Equilibrium analysis of lattice-mismatched nanowire heterostructures. Mater. Res. Soc. Symp. Proc. 737, F10.4.1–6 (2003).

    Google Scholar 

  11. Zervos, M. & Feiner, L.F. Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires. J. Appl. Phys. 95, 281–291 (2004).

    Article  CAS  Google Scholar 

  12. Givargizov, E.I. Periodic instability in whisker growth. J. Cryst. Growth 20, 217–226 (1973).

    Article  CAS  Google Scholar 

  13. Givargizov, E.I. Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975).

    Article  CAS  Google Scholar 

  14. Hiruma, K. et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995).

    Article  CAS  Google Scholar 

  15. Kamins, T.I., Li, X., Williams, R.S. & Liu, X. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503–506 (2004).

    Article  CAS  Google Scholar 

  16. Zhong, Z., Qian, F., Wang, D. & Lieber, C.M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343–346 (2003).

    Article  CAS  Google Scholar 

  17. Huang, M.H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  18. Bakkers, E.P.A.M. & Verheijen, M.A. Synthesis of InP nanotubes. J. Am. Chem. Soc. 125, 3440–3441 (2003).

    Article  CAS  Google Scholar 

  19. Lide, D.R. (ed.) Handbook of Chemistry and Physics (CRC, Boca Raton, 1995).

    Google Scholar 

  20. Horn-von Hoegen, M., LeGoues, F.K., Copel, M., Reuter, M.C. & Tromp, R.M. Defect self-annihilation in surfactant-mediated epitaxial growth. Phys. Rev. Lett. 67, 1130–1133 (1991).

    Article  CAS  Google Scholar 

  21. Wong, H.S.P. Beyond the conventional transistor. IBM J. Res. Dev. 46, 133–167 (2002).

    Article  CAS  Google Scholar 

  22. Ruan, Y.C. & Ching, W.Y. An effective dipole theory for band lineups in semiconductor heterojunctions. J. Appl. Phys. 62, 2885–2897 (1987).

    Article  CAS  Google Scholar 

  23. Yu, K.M., Moll, A.J. & Walukiewicz, W. Amphoteric behavior and precipitation of Ge dopants in InP. J. Appl. Phys. 80, 4907–4915 (1996).

    Article  CAS  Google Scholar 

  24. Krinhj, P., Hansen, J.L. & Shiryaev, S.Y. Structural and electrical characteristics of Ge and Se implanted InP after thermal annealing. J. Appl. Phys. 72, 2249–2255 (1992).

    Article  Google Scholar 

  25. Sakai, A., Tatsumi, T. & Aoyama, K. Growth of strain-relaxed Ge films on Si(001) surfaces. Appl. Phys. Lett. 71, 3510–3512 (1997).

    Article  CAS  Google Scholar 

  26. Duan, X. & Lieber, C.M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik P. A. M. Bakkers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakkers, E., van Dam, J., De Franceschi, S. et al. Epitaxial growth of InP nanowires on germanium. Nature Mater 3, 769–773 (2004). https://doi.org/10.1038/nmat1235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing