Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system

Abstract

The recent discovery of ferromagnetism above room temperature in low-temperature-processed MnO2–ZnO has generated significant interest. Using suitably designed bulk and thin-film studies, we demonstrate that the ferromagnetism in this system originates in a metastable phase rather than by carrier-induced interaction between separated Mn atoms in ZnO. The ferromagnetism persists up to 980 K, and further heating transforms the metastable phase and kills the ferromagnetism. By studying the interface diffusion and reaction between thin-film bilayers of Mn and Zn oxides, we show that a uniform solution of Mn in ZnO does not form under low-temperature processing. Instead, a metastable ferromagnetic phase develops by Zn diffusion into the Mn oxide. Direct low-temperature film growth of Zn-incorporated Mn oxide by pulsed laser deposition shows ferromagnetism at low Zn concentration for an optimum oxygen growth pressure. Our results strongly suggest that the observed ferromagnetic phase is oxygen-vacancy-stabilized Mn2−xZnxO3−δ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetization, TGA and XRD data for bulk compounds.
Figure 2: XRD patterns, RBS spectra and magnetization data for thin-film bilayer samples of the oxides of Zn and Mn.
Figure 3: XRD and magnetization (insets) data for Zn incorporated manganese oxide films grown by pulsed laser deposition.

Similar content being viewed by others

References

  1. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  CAS  Google Scholar 

  2. Prinz, G.A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  3. Wolf, S.A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  4. Das Sarma, S. A new device based on quantum spin rather than on charge, may yield the next generation of microelectronics. Am. Sci. 89, 516–523 (2001).

    Article  Google Scholar 

  5. Ohno, H. et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    Article  CAS  Google Scholar 

  6. Matsukura, F. et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in Ga1-xMnxAs. Phys. Rev. Lett. 83, 3073–3076 (1999).

    Article  Google Scholar 

  7. Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    Article  CAS  Google Scholar 

  8. Shinde, S.R. et al. Ferromagnetism in laser deposited anatase Ti1-xCoxO2-δ films. Phys. Rev. B 67, 115211 (2003).

    Article  Google Scholar 

  9. Ogale, S.B. et al. High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-δ . Phys. Rev. Lett. 91, 077205 (2003).

    Article  CAS  Google Scholar 

  10. Shinde, S.R. et al. Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt doped rutile TiO2 films. Phys. Rev. Lett. 92, 166601 (2004).

    Article  CAS  Google Scholar 

  11. Coey, J.M.D., Douvalis, A.P., Fitzerald, C.B. & Venkatesan, M. Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004).

    Article  CAS  Google Scholar 

  12. Sharma, P. et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Mater. 2, 673–677 (2003).

    Article  CAS  Google Scholar 

  13. Fukumura, T., Jin, Z., Ohtomo, A., Koinuma, H. & Kawasaki, M. An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett. 75, 3366–3368 (1999).

    Article  CAS  Google Scholar 

  14. Fukumura, T. et al. Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 78, 958–960 (2001).

    Article  CAS  Google Scholar 

  15. Ueda, K., Tabata, H. & Kawai, T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001).

    Article  CAS  Google Scholar 

  16. Ando, K. et al. Magneto-optical properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 89, 7284–7286 (2001).

    Article  CAS  Google Scholar 

  17. Kolesnik, S., Dabrowski, B. & Mais, J. Origin of spin-glass behavior in Zn1-xMnxO. J. Supercond. 15, 251–255 (2002).

    Article  CAS  Google Scholar 

  18. Tiwari, A. et al. Structural, optical and magnetic properties of diluted magnetic semiconducting Zn1-xMnxO films. Solid State Commn. 121, 371–374 (2002).

    Article  CAS  Google Scholar 

  19. Jung, S.W. et al. Ferromagnetic properties of Zn1-xMnxO epitaxial thin films. Appl. Phys. Lett. 80, 4561–4563 (2002).

    Article  CAS  Google Scholar 

  20. Han, S.-J. et al. Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction. Appl. Phys. Lett. 83, 920–922 (2003).

    Article  CAS  Google Scholar 

  21. Cheng, X.M. & Chien, C.L. Magnetic properties of epitaxial Mn-doped ZnO thin films. J. Appl. Phys. 93, 7876–7878 (2003).

    Article  CAS  Google Scholar 

  22. Yoon, S.W. et al. Magnetic properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 93, 7879–7881 (2003).

    Article  CAS  Google Scholar 

  23. Kim, Y.M., Yoon, M., Park, I.-W., Park, Y.J. & Lyou, J.H. Synthesis and magnetic properties of Zn1-xMnxO films prepared by the sol-gel method. Solid State Commun. 129, 175–178 (2004).

    Article  CAS  Google Scholar 

  24. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support under Defense Advanced Research Projects Agency grant number N000140210962 and National Science Foundation-MRSEC DMR-00-80008, including support under NSF-MRSEC for shared experimental facilities of PLD and RBS at the Center for Superconductivity Research, University of Maryland. The authors would like to thank Sang Wook Cheong, Sankar Das Sarma and Richard Greene for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Ogale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundaliya, D., Ogale, S., Lofland, S. et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system. Nature Mater 3, 709–714 (2004). https://doi.org/10.1038/nmat1221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing