Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical epitaxial polymerization of single-molecular wires

Abstract

The fabrication of organized molecular-scale structures is key to realizing high-performance molecular- and conjugated-polymer devices. Here, we demonstrate a unique single-molecular processing technique using electrochemistry, termed 'electrochemical epitaxial polymerization'. This technique is based on step-by-step electropolymerization of the monomer by applying voltage pulses to a monomer–electrolyte solution that also contains iodine. Using this technique, we observe the formation of high-density arrays of single conjugated-polymer wires as long as 75 nm on the surface of a Au(111) electrode. Our findings unveil the mechanism of electropolymerization, showing that the conjugated polymer wires grow from nuclei adsorbed on the iodine-covered Au(111) surface. The results may also open the door to mass-production of molecular-scale devices based on conjugated polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical property of the BuOMT monomer.
Figure 2: Electrochemical epitaxial polymerization of single-polythiophene wires.
Figure 3: Iodine adlayer on Au.
Figure 4: Normal electropolymerization without iodine as a control experiment.
Figure 5: Mechanism of electrochemical epitaxial polymerization.
Figure 6: Dependence of the polymer shape on the monomer type.
Figure 7: Movement and blinking of single polythiophene.

Similar content being viewed by others

References

  1. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  2. Dimitrakopoulos, C.D. & Mascaro, D.J. Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001).

    Article  CAS  Google Scholar 

  3. Friend, R.H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  4. Gross, M. et al. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 405, 661–665 (2000).

    Article  CAS  Google Scholar 

  5. Yu, G., Gao, J., Hummelen, J.C., Wudl, F. & Heeger, A.J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  6. Granström, M. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998).

    Article  Google Scholar 

  7. Tourillon, G. & Garnier, F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. 135, 173–178 (1982).

    Article  CAS  Google Scholar 

  8. Garnier, F., Tourillon, G., Barraud, J.Y. & Dexpert, H. First evidence of crystalline structure in conducting polythiophene. J. Mater. Sci. 20, 2687–2694 (1985).

    Article  CAS  Google Scholar 

  9. Nyffenegger, R.M. & Penner, R.M. Nanometer-scale electropolymerization of aniline using the scanning tunneling microscope. J. Phys. Chem. 100, 17041–17049 (1996).

    Article  CAS  Google Scholar 

  10. Kolb, D.M., Ullmann, R. & Will, T. Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope. Science 275, 1097–1099 (1997).

    Article  CAS  Google Scholar 

  11. Zhou, L., Ho, P.K.H., Zhang, P.C., Li, S.F.Y. & Xu, G.Q. In situ STM tip-induced electropolymerization of poly(3-octylthiophene). Appl. Phys. A 66, S643–S647 (1998).

    Article  CAS  Google Scholar 

  12. Maynor, B.W., Filocamo, S.F., Grinstaff, M.W. & Liu, J. Direct-writing of polymer nanostructures: poly(thiophene) nanowires on semiconducting and insulating surfaces. J. Am. Chem. Soc. 124, 522–523 (2002).

    Article  CAS  Google Scholar 

  13. Iyoda, T. et al. The 100-Å-order depth profile control of polypyrrole-poly(3-methylthiophene) composite thin film by potential-programmed electropolymerization. J. Phys. Chem. 95, 5215–5220 (1991).

    Article  CAS  Google Scholar 

  14. Favier, F., Walter, E.C., Zach, M.P., Benter, T. & Penner, R.M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001).

    Article  CAS  Google Scholar 

  15. Favier, F., Liu, H. & Penner, R.M. Size-selective growth of nanoscale tetrathiafulvalene bromide crystallites on platinum particles. Adv. Mater. 13, 1567–1570 (2001).

    Article  CAS  Google Scholar 

  16. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    Article  CAS  Google Scholar 

  17. Okawa, Y. & Aono, M. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys. 115, 2317–2322 (2001).

    Article  CAS  Google Scholar 

  18. Lin, L.G. et al. An in situ STM study on the long-range surface restructuring of Au(111) in a non-chloroaluminumated ionic liquid. Electrochem. Commun. 5, 995–999 (2003).

    Article  CAS  Google Scholar 

  19. Huang, L., Zeppenfeld, P., Horch, S. & Comsa, G. Determination of iodine adlayer structures on Au(111) by scanning tunneling microscopy. J. Chem. Phys. 107, 585–591 (1997).

    Article  CAS  Google Scholar 

  20. Kunitake, M., Batina, N. & Itaya, K. Self-organized porphyrin array on iodine-modified Au(111) in electrolyte solutions: in situ scanning tunneling microscopy study. Langmuir 11, 2337–2340 (1995).

    Article  CAS  Google Scholar 

  21. Samorí, P., Severin, N., Müllen, K. & Rabe, J.P. Macromolecular fractionation of rod-like polymers at atomically flat solid-liquid interfaces. Adv. Mater. 12, 579–582 (2000).

    Article  Google Scholar 

  22. Mena-Osteritz, E. et al. Two-dimensional crystals of poly(3-alkyl-thiophene)s: direct visualization of polymer folds in submolecular resolution. Angew. Chem. Int. Edn 39, 2680–2684 (2000).

    Article  CAS  Google Scholar 

  23. Grévin, B., Rannou, P., Payerne, R., Pron, A. & Travers, J.P. Scanning tunneling microscopy investigations of self-organized poly(3-hexylthiophene) two-dimensional polycrystals. Adv. Mater. 15, 881–884 (2003).

    Article  Google Scholar 

  24. Grévin, B., Rannou, P., Payerne, R., Pron, A. & Travers, J.P. Multi-scale scanning tunneling microscopy imaging of self-organized regioregular poly(3-hexylthiophene) films. J. Chem. Phys. 118, 7097–7102 (2003).

    Article  Google Scholar 

  25. Charra, F., Fichou, D., Nunzi, J.M. & Pfeffer, N. Picosecond photoinduced dichroism in solutions of thiophene oligomers. Chem. Phys. Lett. 192, 566–570 (1992).

    Article  CAS  Google Scholar 

  26. Tao, N.J. & Lindsay, S.M. In situ scanning tunneling microscopy study of iodine and bromine adsorption on Au(111) under potential control. J. Phys. Chem. 96, 5213–5217 (1992).

    Article  CAS  Google Scholar 

  27. Yamada, T., Batina, N. & Itaya, K. Structure of electrochemically deposited iodine adlayer on Au(111) studied by ultrahigh-vacuum instrumentation and in situ STM. J. Phys. Chem. 99, 8817–8823 (1995).

    Article  CAS  Google Scholar 

  28. Roncali, J. Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem. Rev. 92, 711–738 (1992).

    Article  CAS  Google Scholar 

  29. Langeveld-Voss, B.M.W. et al. Circular dichroism and circular polarization of photoluminescence of highly ordered poly{3,4-di[(S)-2-methylbutoxy]thiophene}. J. Am. Chem. Soc. 118, 4908–4909 (1996).

    Article  CAS  Google Scholar 

  30. Langeveld-Voss, B.M.W., Janssen, R.A.J. & Meijer, E.W. On the origin of optical activity in polythiophenes. J. Molec. Struct. 521, 285–301 (2000).

    Article  CAS  Google Scholar 

  31. Donhauser, Z.J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  32. Ramachandran, G.K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    Article  CAS  Google Scholar 

  33. Furukawa, Y. Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J. Phys. Chem. 100, 15644–15653 (1996).

    Article  CAS  Google Scholar 

  34. Daoust, G. & Leclerc, M. Structure-property relationships in alkoxy-substituted polythiophenes. Macromolecules 24, 455–459 (1991).

    Article  CAS  Google Scholar 

  35. Leclerc, M. Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater. 11, 1491–1498 (1999).

    Article  CAS  Google Scholar 

  36. Welsh, D.M. et al. Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers. Macromolecules 35, 6517–6525 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Foundation of the Tokyo Electric Power Company, Japan Society for the Promotion of Science, and Support Center for Advanced Telecommunications Technology Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sakaguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaguchi, H., Matsumura, H. & Gong, H. Electrochemical epitaxial polymerization of single-molecular wires. Nature Mater 3, 551–557 (2004). https://doi.org/10.1038/nmat1176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing