Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A buckling-based metrology for measuring the elastic moduli of polymeric thin films

Abstract

As technology continues towards smaller, thinner and lighter devices, more stringent demands are placed on thin polymer films as diffusion barriers, dielectric coatings, electronic packaging and so on. Therefore, there is a growing need for testing platforms to rapidly determine the mechanical properties of thin polymer films and coatings. We introduce here an elegant, efficient measurement method that yields the elastic moduli of nanoscale polymer films in a rapid and quantitative manner without the need for expensive equipment or material-specific modelling. The technique exploits a buckling instability that occurs in bilayers consisting of a stiff, thin film coated onto a relatively soft, thick substrate. Using the spacing of these highly periodic wrinkles, we calculate the film's elastic modulus by applying well-established buckling mechanics. We successfully apply this new measurement platform to several systems displaying a wide range of thicknessess (nanometre to micrometre) and moduli (MPa to GPa).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocol and representative images illustrating the buckling instability of a thin polymeric film on a soft silicone sheet.
Figure 2: Modulus measurements of a thickness gradient film of PS.
Figure 3: Modulus versus plasticizer concentration (dioctyl phthalate) for thin PS films.
Figure 4: Modulus versus porosity for a series of nanoporous organosilicate films.

Similar content being viewed by others

References

  1. Elshabini-Riad, A.A.R. & Barlow, F.D. Thin Film Technology Handbook (McGraw-Hill, New York, 1997).

    Google Scholar 

  2. Asif, S.A.S., Wahl, K.J. & Colton, R.J. Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408–2413 (1999).

    Article  CAS  Google Scholar 

  3. VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F. & Meyers, G.F. Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15–43 (2001).

    Article  CAS  Google Scholar 

  4. Du, B.Y. et al. Nanostructure and mechanical measurement of highly oriented lamellae of melt-drawn HDPE by scanning probe microscopy. Macromolecules 33, 7521–7528 (2000).

    Article  CAS  Google Scholar 

  5. Du, B.Y., Tsui, O.K.C., Zhang, Q.L. & He, T.B. Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 17, 3286–3291 (2001).

    Article  CAS  Google Scholar 

  6. Stafford, C.M., Harrison, C., Karim, A. & Amis, E.J. Measuring the modulus of polymer films by strain-induced buckling instabilities. Polymer Preprints 43, 1335 (2002).

    CAS  Google Scholar 

  7. Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W. & Whitesides, G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    Article  CAS  Google Scholar 

  8. Bowden, N., Huck, W.T.S., Paul, K.E. & Whitesides, G.M. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75, 2557–2559 (1999).

    Article  CAS  Google Scholar 

  9. Biot, M.A. Bending of an infinite beam on an elastic foundation. J. Appl. Mech. A 4, 1–7 (1937).

    Google Scholar 

  10. Allen, H.G. Analysis and Design of Structural Sandwich Panels (Pergamon, New York, 1969).

    Google Scholar 

  11. Volynskii, A.L., Bazhenov, S., Lebedeva, O.V. & Bakeev, N.F. Mechanical buckling instability of thin coatings deposited on soft polymer substrates. J. Mater. Sci. 35, 547–554 (2000).

    Article  CAS  Google Scholar 

  12. Groenewold, J. Wrinkling of plates coupled with soft elastic media. Physica A 298, 32–45 (2001).

    Article  Google Scholar 

  13. Huang, R. in UT-MSSM Report No. 04/01 1–48 (Univ. Texas, Austin, 2004).

    Google Scholar 

  14. Meredith, J.C., Karim, A. & Amis, E.J. Combinatorial methods for investigations in polymer materials science. Mater. Res. Soc. Bull. 27, 330–335 (2002).

    Article  CAS  Google Scholar 

  15. Lenhart, J.L. et al. Combinatorial methodologies offer potential for rapid research of photoresist materials and formulations. J. Vac. Sci. Technol. B 20, 704–709 (2002).

    Article  CAS  Google Scholar 

  16. Meier, M.A.R., Hoogenboom, R. & Schubert, U.S. Combinatorial methods, automated synthesis and high-throughput screening in polymer research: The evolution continues. Macromol. Rapid Comm. 25, 21–33 (2004).

    Article  CAS  Google Scholar 

  17. Schmatloch, S., Bach, H., van Benthem, R. & Schubert, U.S. High-throughput experimentation in organic coating and thin film research: State-of-the-art and future perspectives. Macromol. Rapid Comm. 25, 95–107 (2004).

    Article  CAS  Google Scholar 

  18. Cawse, J.N. Experimental strategies for combinatorial and high-throughput materials development. Acc. Chem. Res. 34, 213–221 (2001).

    Article  CAS  Google Scholar 

  19. Brandrup, J., Immergut, E.H. & Grulke, E.A. (eds) Polymer Handbook (Wiley, New York, 1999).

    Google Scholar 

  20. Sears, J.K. & Darby, J.R. The Technology of Plasticizers (Wiley, New York, 1982).

    Google Scholar 

  21. VanLandingham, M.R. Review of instrumented indentation. J. Res. Natl Inst. Stan. 108, 249–265 (2003).

    Article  Google Scholar 

  22. Wetzel, J.T. et al. Evaluation of material property requirements and performance of ultra-low dielectric constant insulators for inlaid copper metallization. IEDM Tech. Digest 73–75 (2001).

  23. Miller, R.D. Device physics - In search of low-k dielectrics. Science 286, 421–423 (1999).

    Article  CAS  Google Scholar 

  24. Volksen, W. et al. in Low Dielectric Constant Materials for IC Applications (eds Ho, P.S., Leu, J. & Lee, W.W.) 167–202 (Springer, New York, 2003).

    Book  Google Scholar 

  25. Grill, A. et al. Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study. J. Appl. Phys. 94, 3427–3435 (2003).

    Article  CAS  Google Scholar 

  26. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

  27. Efimenko, K., Wallace, W.E. & Genzer, J. Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306–315 (2002).

    Article  CAS  Google Scholar 

  28. Flannery, C.M., Wittkowski, T., Jung, K., Hillebrands, B. & Baklanov, M.R. Critical properties of nanoporous low dielectric constant films revealed by Brillouin light scattering and surface acoustic wave spectroscopy. Appl. Phys. Lett. 80, 4594–4596 (2002).

    Article  CAS  Google Scholar 

  29. Phani, K.K. & Niyogi, S.K. Young modulus of porous brittle solids. J. Mater. Sci. 22, 257–263 (1987).

    Article  CAS  Google Scholar 

  30. Knudsen, F.P. Effect of porosity on Young's modulus of alumina. J. Am. Ceram. Soc. 45, 94–95 (1962).

    Article  CAS  Google Scholar 

  31. Huang, E. et al. Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. Appl. Phys. Lett. 81, 2232–2234 (2002).

    Article  CAS  Google Scholar 

  32. Hedstrom, J.A. et al. Pore morphologies in disordered nanoporous thin films. Langmuir 20, 1535–1538 (2004).

    Article  CAS  Google Scholar 

  33. Roberts, A.P. & Garboczi, E.J. Elastic properties of model porous ceramics. J. Am. Ceram. Soc. 83, 3041–3048 (2000).

    Article  CAS  Google Scholar 

  34. Meredith, J.C., Smith, A.P., Karim, A. & Amis, E.J. Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33, 9747–9756 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful discussions with Rui Huang, Michael J. Fasolka, Jack F. Douglas, Richard A. Register, Edward J. Garboczi and Jan Groenewold. We thank Donald Hunston and Sheng Lin-Gibson for measurement assistance. C.M.S. and C.H. acknowledge the NIST National Research Council Postdoctoral Fellowship Program and funding from the MSEL Director's Reserve Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Stafford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stafford, C., Harrison, C., Beers, K. et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature Mater 3, 545–550 (2004). https://doi.org/10.1038/nmat1175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing