Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events

Abstract

The formation of nanostructures with controlled size and morphology has been the focus of intensive research in recent years1,2,3,4,5,6,7,8,9,10. Such nanostructures are important in the development of nanoscale devices and in the exploitation of the properties of nanomaterials9. Here we show how tree-like nanostructures ('nanotrees') can be formed in a highly controlled way. The process involves the self-assembled growth of semiconductor nanowires via the vapour–liquid–solid11 growth mode. This bottom-up method uses initial seeding by catalytic nanoparticles12 to form the trunk, followed by the sequential seeding of branching structures. Each level of branching is controlled in terms of branch length, diameter and number, as well as chemical composition. We show, by high-resolution transmission electron microscopy, that the branching mechanism gives continuous crystalline (monolithic) structures throughout the extended and complex tree-like structures. The controlled seeding method that we report here has potential as a generic means of forming complex branching structures, and may also offer opportunities for applications, such as the mimicking of photosynthesis in nanotrees.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of GaP nanotrees.
Figure 2: TEM images of GaP nanotrees.
Figure 3: Control of morphology of tree structures by deposition of seed particles.
Figure 4: Nanotrees containing a GaP-GaAsP double heterostructure in the branches.

Similar content being viewed by others

References

  1. Jun, Y.W., Lee, S.M., Kang, N.J. & Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 123, 5150–5151 (2001).

    Article  CAS  Google Scholar 

  2. Jun, Y.W., Jung, Y.Y. & Cheon, J. Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc. 124, 615–619 (2002).

    Article  CAS  Google Scholar 

  3. Wu, Z.H. et al. Growth, branching and kinking of molecular-beam epitaxial <110> GaAs nanowires. Appl. Phys. Lett. 83, 3368–3370 (2003).

    Article  CAS  Google Scholar 

  4. Manna, L., Scher, E.C. & Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  5. Manna, L., Milliron, D.J., Meisel, A., Scher, E.C. & Alivisatos, A.P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  6. Gao, P. & Wang, Z.L. Self-assembled nanowire-nanoribbon junction arrays of ZnO. J. Phys. Chem. B 106, 12653–12658 (2002).

    Article  CAS  Google Scholar 

  7. Yan, H. et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728–4729 (2003).

    Article  CAS  Google Scholar 

  8. Yan, H., He, R., Pham, J. & Yang, P. Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv. Mater. 15, 402–405 (2003).

    Article  CAS  Google Scholar 

  9. Samuelson, L. Self-forming nanoscale devices. Mater. Today 6, 22–31 (2003).

    Article  CAS  Google Scholar 

  10. Lao, Y.L., Wen, J.G. & Ren, Z.F. Hierarchical ZnO nanostructures. Nano Lett. 2, 1287–1291 (2002).

    Article  CAS  Google Scholar 

  11. Wagner, R.S. & Ellis, W.C. Vapour-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  12. Magnusson, M.H., Deppert, K., Malm, J.-O., Bovin, J.-O. & Samuelson, L. Gold nanoparticles: production, reshaping, and thermal charging. J. Nanopart. Res. 1, 243–251 (1999).

    Article  CAS  Google Scholar 

  13. Ohlsson, B.J. et al. Size-, shape-, and position-controlled GaAs nano-whiskers. Appl. Phys. Lett. 79, 3335–3337 (2001).

    Article  CAS  Google Scholar 

  14. Ohlsson, B.J. et al. Growth and characterisation of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. Physica E 13, 1126–1130 (2002).

    Article  CAS  Google Scholar 

  15. Xia, Y. et al. One-dimensional nanostructures: synthesis, characterisation and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  16. Shimada, T. et al. Size, position, and direction control on GaAs and InAs nanowhisker growth. Superlatt. Microstruct. 24, 453–458 (1998).

    Article  CAS  Google Scholar 

  17. Borgström, M., Deppert, K., Samuelson, L. & Seifert, W. Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study. J. Cryst. Growth 260, 18–22 (2004).

    Article  Google Scholar 

  18. Mårtensson, T., Borgström, M., Seifert, W., Ohlsson, B.J. & Samuelson, L. Fabrication of individually seeded nanowire arrays by vapour-liquid-solid growth. Nanotechnology 14, 1–4 (2003).

    Article  Google Scholar 

  19. Mårtenson, T. et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004).

    Article  Google Scholar 

  20. Björk, M.T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    Article  Google Scholar 

  21. Björk, M.T. et al. One-dimensional heterostructures in semiconductor whiskers. Appl. Phys. Lett. 80, 1058–1060 (2002).

    Article  Google Scholar 

  22. Wu, Y., Fan, R. & Yang, P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    Article  CAS  Google Scholar 

  23. Gudiksen, M.S., Lauhon, L.J., Wang, J.F., Smith, D.C. & Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002)

    Article  CAS  Google Scholar 

  24. Hiruma, K. et al. Quantum size microcrystals grown using organometallic vapour phase epitaxy. Appl. Phys. Lett. 59, 431–433 (1991)

    Article  CAS  Google Scholar 

  25. Poole, P.J., Lefebvre, J. & Fraser, J. Spatially controlled, nanoparticle-free growth of InP nanowires. Appl. Phys. Lett. 83, 2055–2057 (2002).

    Article  Google Scholar 

  26. Ohlsson, B.J. Semiconductor Hetero-and Nanostructures. Thesis, Lund Univ. (2001).

    Google Scholar 

  27. Deppert, K., Schmidt, F., Krinke, T., Dixkens, J. & Fissan, H. Electrostatic precipitator for homogeneous deposition of ultrafine particles to create quantum-dot structures. J. Aerosol Sci. 27, S151–S152 (1996)

    Article  Google Scholar 

  28. Krinke, T.J., Deppert, K., Magnusson, M.H., Schmidt, F. & Fissan, H. Microscopic aspects of the deposition of nanoparticles from the gas phase. J. Aerosol Sci. 33, 1341–1359 (2002).

    Article  CAS  Google Scholar 

  29. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  30. O'Regan, B. & Grätzel, M. A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Wacaser and M. Karlsson for assistance in producing the aerosols, M. Borgström for assistance in growing the nanowires, P. Svensson for assistance in growing heterostructures, T. Krinke for computer simulations of aerosol particle deposition, N. Panev for photoluminescence analysis, U. Krishnamachari for growth of [001] trunks, and L. Karlsson and J.-O. Malm for assistance with TEM imaging. This work was performed within the Nanometer Structure Consortium at Lund University, and supported by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Samuelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, K., Deppert, K., Larsson, M. et al. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nature Mater 3, 380–384 (2004). https://doi.org/10.1038/nmat1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing