Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A photolabile hydrogel for guided three-dimensional cell growth and migration

Abstract

Tissue engineering aims to replace, repair or regenerate tissue/organ function, by delivering signalling molecules and cells on a three-dimensional (3D) biomaterials scaffold that supports cell infiltration and tissue organization1,2. To control cell behaviour and ultimately induce structural and functional tissue formation on surfaces, planar substrates have been patterned with adhesion signals that mimic the spatial cues to guide cell attachment and function3,4,5. The objective of this study is to create biochemical channels in 3D hydrogel matrices for guided axonal growth. An agarose hydrogel modified with a cysteine compound containing a sulphydryl protecting group provides a photolabile substrate that can be patterned with biochemical cues. In this transparent hydrogel we immobilized the adhesive fibronectin peptide fragment, glycine–arginine–glycine–aspartic acid–serine (GRGDS), in selected volumes of the matrix using a focused laser. We verified in vitro the guidance effects of GRGDS oligopeptide-modified channels on the 3D cell migration and neurite outgrowth. This method for immobilizing biomolecules in 3D matrices can generally be applied to any optically clear hydrogel, offering a solution to construct scaffolds with programmed spatial features for tissue engineering applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The general strategy used to create adhesive biochemical channels in agarose hydrogel matrices relies on modifying agarose with photolabile groups, focused laser light sources and biomolecule coupling.
Figure 2: Biochemical channels synthesized in agarose hydrogels were characterized with a fluorescein-tagged GRGDS peptide.
Figure 3: The transmittance of laser light is affected by both the thicknesses of the S-NBC-modified agarose hydrogel matrices and the concentration of S-NBC of 0.4 mM and 0.8 mM (mean ± standard deviation, n = 5).
Figure 4: Primary rat dorsal root ganglia cells were plated on 3D patterned GRGDS oligopeptide-modified, 0.5 wt% agarose gels.

Similar content being viewed by others

References

  1. Griffith, L.G. & Naughton, G. Tissue engineering—current challenges and expanding opportunities. Science 295, 1009–1014 (2002).

    Article  CAS  Google Scholar 

  2. Sipe, J.D. Tissue engineering and reparative medicine. Ann. NY Acad. Sci. 961, 1–9 (2002).

    Article  CAS  Google Scholar 

  3. Dertinger, S.K., Jiang, X., Li, Z., Murthy, V.N. & Whitesides, G.M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl Acad. Sci. USA 99, 12542–12547 (2002).

    Article  CAS  Google Scholar 

  4. Saneinejad, S. & Shoichet, M.S. Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth. J. Biomed. Mater. Res. 50, 465–474 (2000).

    Article  CAS  Google Scholar 

  5. Herbert, C.B. et al. Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem. Biol. 4, 731–737 (1997).

    Article  CAS  Google Scholar 

  6. Halstenberg, S., Panitch, A., Rizzi, S., Hall, H. & Hubbell, J.A. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710–723 (2002).

    Article  CAS  Google Scholar 

  7. Behravesh, E., Jo, S., Zygourakis, K. & Mikos, A.G. Synthesis of in situ cross-linkable macroporous biodegradable poly(propylene fumarate-co-ethylene glycol) hydrogels. Biomacromolecules 3, 374–381 (2002).

    Article  CAS  Google Scholar 

  8. Alsberg, E., Anderson, K.W., Albeiruti, A., Rowley, J.A. & Mooney, D.J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).

    Article  CAS  Google Scholar 

  9. Liu, V.A. & Bhatia, S.N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices 4, 257–266 (2002).

    Article  CAS  Google Scholar 

  10. Ward, J.H., Bashir, R. & Peppas, N.A. Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. J. Biomed. Mater. Res. 56, 351–360 (2001).

    Article  CAS  Google Scholar 

  11. Yu, T. & Ober, C.K. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules 4, 1126–1131 (2003).

    Article  CAS  Google Scholar 

  12. Tan, W. & Desai, T.A. Microfluidic patterning of cellular biopolymer matrices for biomimetic 3D structures. Biomed. Microdevices 5, 235–244 (2003).

    Article  CAS  Google Scholar 

  13. Fernandes, R. et al. Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19, 4058–4062 (2003).

    Article  CAS  Google Scholar 

  14. Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R.R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157–161 (2003).

    Article  CAS  Google Scholar 

  15. Borkenhagen, M., Clemence, J.F., Sigrist, H. & Aebischer, P. Three-dimensional extracellular matrix engineering in the nervous system. J. Biomed. Mater. Res. 40, 392–400 (1998).

    Article  CAS  Google Scholar 

  16. Luo, N., Metters, A.T., Hutchison, J.B., Bowman, C.N. & Anseth, K.S. A methacrylated photoiniferter as a chemical basis for microlithography: Micropatterning based on photografting polymerization. Macromolecules 36, 6739–6745 (2003).

    Article  CAS  Google Scholar 

  17. Blawas, A.S. & Reichert, W.M. Protein patterning. Biomaterials 19, 595–609 (1998).

    Article  CAS  Google Scholar 

  18. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14, 356–363 (1998).

    Article  CAS  Google Scholar 

  19. Clark, P., Britland, S. & Connolly, P. Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J. Cell Sci. 105, 203–212 (1993).

    CAS  Google Scholar 

  20. Hammarback, J.A., Palm, S.L., Furcht, L.T. & Letourneau, P.C. Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin. J. Neurosci. Res. 13, 213–220 (1985).

    Article  CAS  Google Scholar 

  21. Ranieri, J.P. et al. Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Intl J. Dev. Neurosci. 12, 725–735 (1994).

    Article  CAS  Google Scholar 

  22. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  23. Bellamkonda, R., Ranieri, J.P. & Aebischer, P. Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro. J. Neurosci. Res. 41, 501–509 (1995).

    Article  CAS  Google Scholar 

  24. Gillies, G.T. et al. A spinal cord surrogate with nanoscale porosity for in vitro simulations of restorative neurosurgical techniques. Nanotechnology 13, 587–591 (2002).

    Article  Google Scholar 

  25. Adams, S.R. & Tsien, R.Y. Controlling cell chemistry with caged compounds. Annu. Rev. Physiol. 55, 755–784 (1993).

    Article  CAS  Google Scholar 

  26. McCray, J.A. & Trentham, D.R. Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Biophys. Chem. 18, 239–270 (1989).

    Article  CAS  Google Scholar 

  27. Yamada, Y. & Kleinman, H.K. Functional domains of cell adhesion molecules. Curr. Opin. Cell Biol. 4, 819–823 (1992).

    Article  CAS  Google Scholar 

  28. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12, 697–715 (1996).

    Article  CAS  Google Scholar 

  29. Siegman, A.E. Lasers (University Science Books, Mill Valley, California, 1986).

    Google Scholar 

  30. Luo, Y. in Department of Chemical Engineering and Applied Chemistry 95–96, 129–132 (University of Toronto, Toronto, Ontario, Canada, 2003).

    Google Scholar 

  31. Silbey, R.J. & Alberty, R.A. Physical chemistry (Wiley, New York, 2001).

    Google Scholar 

  32. Condic, M.L. & Letourneau, P.C. Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth. Nature 389, 852–856 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada, Ontario Graduate Scholarship and Connaught for funding and thank Ying-Fang Chen, Patricia Musoke-Zawedde and David Martens for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly S. Shoichet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, S1

Supplementary Information, S2 (PDF 3524 kb)

Supplementary Information, S3

Supplementary Information, S4

Supplementary Information, S5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Shoichet, M. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Mater 3, 249–253 (2004). https://doi.org/10.1038/nmat1092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing