Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Advanced anodes for high-temperature fuel cells

Abstract

Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500–1,000 °C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Image of a Ni/YSZ cermet by optical and scanning electron microscopies with elemental mapping.
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Baur, E. & Preis, H. Uber die Eisenoxyd-Kathode in der Kohle-Luft-Kette. Z. Elektrochem. 43, 727 (1937).

    CAS  Google Scholar 

  2. Möbius, H.-H. On the history of solid electrolyte fuel cells. J. Solid State Electrochem. 1, 2 (1997).

    Article  Google Scholar 

  3. Spacil, H.S. Electrical device including nickel-containing stabilized zirconia electrode. US Patent 3,558,360 (1970).

  4. Lee, J.H. et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet. Solid State Ionics 148, 1–2 (2002).

    Article  Google Scholar 

  5. Toebes, M.L., Bitter, J.H., van Dillen, A.J. & de Jong, K.P. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catal. Today 76, 33–42 (2002).

    Article  CAS  Google Scholar 

  6. Sasaki, K. & Teraoka, Y. Equilibria in fuel cell gases - I. Equilibrium compositions and reforming conditions. J. Electrochem. Soc. 150, A878–A884 (2003).

    Article  CAS  Google Scholar 

  7. Murray, E.P., Tsai, T. & Barnett, S.A. A direct-methane fuel cell with a ceria-based anode Nature 400, 649–651 (1999).

    Article  CAS  Google Scholar 

  8. Mogensen, M., Jensen, K.V., Jorgensen, M.J. & Primdahl, S. Progress in understanding SOFC electrodes. Solid State Ionics 150, 123–129 (2002).

    Article  CAS  Google Scholar 

  9. Lu, X.Y., Faguy, P.W. & Liu, M.l. In situ potential-dependent FTIR emission spectroscopy - A novel probe for high temperature fuel cell interfaces. J. Electrochem. Soc. 149, A1293–A1298 (2002).

    Article  CAS  Google Scholar 

  10. Bernardo, C.A., Alstrup, I. & Rostrupnielsen, J.R. Carbon deposition and methane steam reforming on silica-supported Ni-Cu catalysts. J. Catal. 96, 517–534 (1985).

    Article  CAS  Google Scholar 

  11. Dong, W.S., Roh, H.S., Jun, K.W., Park, S.E. & Oh, Y.S. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Appl. Catal. A 226, 63–72 (2002).

    Article  CAS  Google Scholar 

  12. Bunluesin, T., Gorte, R.J. & Graham, G.W. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl. Catal. B 15, 107–114 (1998).

    Article  CAS  Google Scholar 

  13. Sharma, S., Hilaire, S., Vohs, J.M., Gorte, R.J. & Jen, H.W. Evidence for oxidation of ceria by CO2 . J. Catal. 190, 199–204 (2000).

    Article  CAS  Google Scholar 

  14. Ramirez-Cabrera, E., Atkinson, A. & Chadwick, D. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis. Solid State Ionics 136, 825–831 (2000).

    Article  Google Scholar 

  15. Marina, O.A. & Mogensen, M. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode. Appl. Catal. A 189, 117–126 (1999).

    Article  CAS  Google Scholar 

  16. Park, S.D., Vohs, J.M. & Gorte, R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).

    Article  CAS  Google Scholar 

  17. Kiratzis, N., Holtappels, P., Hatchwell, C.E., Mogensen, M. & Irvine, J.T.S. Preparation and characterisation of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes. Fuel Cells 1, 211–218 (2001).

    Article  CAS  Google Scholar 

  18. Kim, H., Park, S., Vohs, J.M. & Gorte, R.J. Direct oxidation of liquid fuels in a solid oxide fuel cell. J. Electrochem. Soc. 148, A693–A695 (2001).

    Article  CAS  Google Scholar 

  19. Minh, N.Q. Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993).

    Article  CAS  Google Scholar 

  20. Yokokawa, H., Sakai, N., Kawada, T. & Dokiya, M., Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics 52, 43–56 (1992).

    Article  CAS  Google Scholar 

  21. Pudmich, G. et al. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid State Ionics 135, 433–438 (2000).

    Article  CAS  Google Scholar 

  22. Tao, S. & Irvine, J.T.S. A redox-stable, efficient anode for solid-oxide fuel cells. Nature Mater. 2, 320–323 (2003).

    Article  CAS  Google Scholar 

  23. Vernoux, P., Guillodo, M., Fouletier, J. & Hammou, A. Alternative anode materials for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135, 425–431 (2000).

    Article  CAS  Google Scholar 

  24. Sfeir, J. et al. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anode. J. Catal. 202, 229–244 (2001).

    Article  CAS  Google Scholar 

  25. Sfeir, J. Van herle, J. & Vasquez, R. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) 570–577 (European SOFC Forum, Switzerland, 2002).

    Google Scholar 

  26. Sauvet, A.L. & Irvine, J.T.S. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) 490–498 (European SOFC Forum, Switzerland 2002).

    Google Scholar 

  27. Slater, P.R., Fagg, D.P. & Irvine, J.T.S. Synthesis and electrical characterisation of the doped perovskite titanates as potential anode materials for solid oxide fuel cells. J. Mater. Chem. 7, 2495–2498 (1997).

    Article  CAS  Google Scholar 

  28. Hui, S.Q. & Petric, A., Electrical properties of yttrium-doped strontium titanate under reducing conditions. J. Electrochem. Soc. 149, J1–J10 (2002).

    Article  CAS  Google Scholar 

  29. Marina, O.A. & Pederson, L.R. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans, J.) 481–489 (European SOFC Forum, Switzerland, 2002).

    Google Scholar 

  30. Canales-Vázquez, J., Tao, S.W. & Irvine, J.T.S. Electrical properties in La2Sr4Ti6O19-d: a Potential anode for high temperature fuel cells solid state ionics. 159, 159–165 (2003).

  31. Reich, C., Kaiser, A. & Irvine, J.T.S. Niobia based rutile materials as sofc anodes, fuel cells - from fundamentals to systems. 1, 249–255 (2001).

  32. Ramos, T. & Atkinson, A. in Ionic and Mixed Conducting Ceramics IV (eds Ramanarayanan, T.A., Worrell, W.L. & Mogensen, M.) 352–367 (Electrochemical Scociety Proceedings Volume PV2001-28, 2001).

    Google Scholar 

  33. Steele, B.C.H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95–110 (2000).

    Article  CAS  Google Scholar 

  34. Wang, S.R., Kobayashi, T., Dokiya, M. & Hashimoto, T. Electrical and ionic conductivity of Gd-doped ceria. J. Electrochem. Soc. 147, 3606–3609 (2000).

    Article  CAS  Google Scholar 

  35. Floyd, J.M. Interpretation of transport phenomena in non-stoichiometric ceria. J. Ind. Technol. 275–280 (1972).

  36. Tao, S. & Irvine, J.T.S. Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. J. Solid State Chem. 165, 12–18 (2002).

    Article  CAS  Google Scholar 

  37. Sauvet, A.-L. & Fouletier, J. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature. J. Power Sources 101, 259–266 (2001).

    Article  CAS  Google Scholar 

  38. Sprague, J.J. & Tuller, H.L. Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate. J. Europ. Ceram. Soc. 19, 803–806 (1999).

    Article  CAS  Google Scholar 

  39. Holtappels, P., Poulsen, F.W. & Mogensen, M. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics 135, 675–679 (2000).

    Article  CAS  Google Scholar 

  40. McIntosh, S., Vohs, J.M. & Gorte, R.J. Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs. J. Electrochem. Soc. 150, A470–A476 (2003).

    Article  CAS  Google Scholar 

  41. Lu, C., Worrell, W.L., Vohs, J.M. & Gorte, R.J. in Solid Oxide Fuel Cells VIII (eds Singhal. S. C. & Dokiya, M.) 773–780 (Electrochemical Society Proceedings Volume 2003-07, 2003)

    Google Scholar 

  42. Lu, C., Worrell, W.L., Gorte, R.J. & Vohs, J.M., SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. J. Electrochem. Soc. 150, A354–A358 (2003).

    Article  CAS  Google Scholar 

  43. Sfeir, J. Alternative Anode Materials for Methane Oxidation in Solid Oxide Fuel Cells Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2001).

    Google Scholar 

  44. Liu, J., Madsen, B.D., Ji, Z.Q. & Barnett, S.A. A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem. Solid State Lett. 5, A122–A124 (2002).

    Article  CAS  Google Scholar 

  45. Sauvet, A.L. & Fouletier, J. Electrochemical properties of a new type of anode material La1-xSrxCr1-yRuyO3-δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim. Acta 47, 987–995 (2001).

    Article  CAS  Google Scholar 

  46. Vernoux, P., Guindet, J. & Kleitz, M. Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells. J. Electrochem. Soc. 145, 3487–3492 (1998).

    Article  CAS  Google Scholar 

  47. Skarmoutsos, D., Teitz, F. & Nikolopoulos, P. Structure - property relationships of Ni/YSZ and Ni/(YSZ+TiO2) cermets. Fuel Cells 1, 243–248 (2001).

    Article  CAS  Google Scholar 

  48. Holtappels, P. Electrocatalysis on Nickel-Cermet E,lectrodes Jülich Research Centre Report number 3414, and Thesis, Univ. Bonn (1997).

    Google Scholar 

  49. Kiratzis, N., Holtappels, P., Hatchwell, C.E., Mogensen, M. & Irvine, J.T.S. Preparation and characterisation of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes. Fuel Cells 1, 211–218 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript is the result of an intense and highly enjoyable workshop organized in Strasbourg, France, December 2002, under the auspices of the European Science Foundation OSSEP programme with support from the US Department of Energy and National Science Foundation. We thank Shanwen Tao (St Andrews) Philippe Stevens (EIER), Jan Van Herle (EPFL) Frank Tietz (Jülich), Jorge Frade (Aveiro), Axel Müller (Karlsruhe), Jan Pieter Ouweltjes (ECN) Anil Virkar (Utah), Olga Marina (PNNL), Truls Norby (Oslo), Tony Petric (McMaster), Elisabeth Siebert (Grenoble), Joseph Sfeir (HTceramix), Wayne Worrell (Pennsylvania), Stuart Adler (Washington), Tatsuya Kawada (Tohoku), Meilin Liu (Georgia), Nguyen Minh (GE) and Anne-Laure Sauvet (Grenoble) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. S. Irvine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, A., Barnett, S., Gorte, R. et al. Advanced anodes for high-temperature fuel cells. Nature Mater 3, 17–27 (2004). https://doi.org/10.1038/nmat1040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing