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Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods
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In this letter,Fig.1f and Supplementary Information Fig.S4 were partially wrongly characterized in relation to indexing the growth direction of InAs
wires that are found in the precipitate.Both figures are corrected below.We additionally comment that we observed in the powder X-ray diffraction
pattern of the precipitate containing InAs wires that the [220] and [311] peaks of InAs are stronger than the [111] peak,unlike the rods (Fig.3 in the
original paper). The strong relative intensity of the [220] peak indicates that the growth of the wires takes place along the <110> direction. This is
further supported by the HRTEM image of the wires (Fig.1f and Supplementary information,Fig.S4).The higher intensity of the [311] peak might
be caused by other,non-wire shaped,crystalline InAs structures in this fraction.
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Figure 1f HRTEM image of part of a nanowire with total dimensions 200 ×12 nm.The
wire,without stacking faults,grows along the InAs <110> direction. Inset:Fourier
transform of the image, indicating that the wire is viewed along the <011> zone axis of the
cubic structure.

Figure S4 HRTEM of an InAs nanowire,~200 ×5 nm in size.The wire grows along the
[110] direction,as also indicated in the Fourier transform of the image viewed along the
<112> zone axis.
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