Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity

Abstract

An interesting feature of elemental boron and boron compounds is the occurrence of highly symmetric icosahedral clusters. The rich chemistry of boron is also dominated by three-dimensional cage structures. Despite its proximity to carbon in the periodic table, elemental boron clusters have been scarcely studied experimentally and their structures and chemical bonding have not been fully elucidated. Here we report experimental and theoretical evidence that small boron clusters prefer planar structures and exhibit aromaticity and antiaromaticity according to the Hückel rules, akin to planar hydrocarbons. Aromatic boron clusters possess more circular shapes whereas antiaromatic boron clusters are elongated, analogous to structural distortions of antiaromatic hydrocarbons. The planar boron clusters are thus the only series of molecules other than the hydrocarbons to exhibit size-dependent aromatic and antiaromatic behaviour and represent a new dimension of boron chemistry. The stable aromatic boron clusters may exhibit similar chemistries to that of benzene, such as forming sandwich-type metal compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoelectron spectra of Bx (x = 10–15).
Figure 2: The low-lying structures of B12 and B13 and their neutrals.
Figure 3: The low-lying structures of B10, B11, B14 and B15, and their neutrals.
Figure 4: Comparison of the occupied π molecular orbitals (MOs) of benzene with those of boron clusters.
Figure 5: Analogy of the aromaticity and antiaromaticity between boron clusters and hydrocarbons.

Similar content being viewed by others

References

  1. Lipscomb, W.L. Boron Hydrides (W.A. Benjamin, New York, 1963).

    Google Scholar 

  2. Meutterties, E.L. (ed.) Boron Hydride Chemistry (Academic, New York, 1975).

    Google Scholar 

  3. Cotton, F.A., Wilkinson, G., Murillo, C.A. & Bochmann, M. Advanced Inorganic Chemistry 6th edn (Wiley, New York, 1999).

    Google Scholar 

  4. Smith, K. Boron's molecular gymnastics. Nature 348, 115–116 (1990).

    Article  Google Scholar 

  5. Jemmis, E.D., Balakrishnarajan, M.M. & Pancharatna, P.D. Electronic requirements for macropolyhedral boranes. Chem. Rev. 102, 93–144 (2002).

    Article  CAS  Google Scholar 

  6. Proceedings of the 13th international symposium on boron, borides, and related compounds (ISBB'99). J. Solid State Chem. 154 (special issue), 1–320 (2000).

  7. Perkins, C.L., Trenary, M. & Tanaka, T. Direct observation of (B12)(B12)12 supericosahedra as the basic structural element in YB66 . Phys. Rev. Lett. 77, 4772–4775 (1996).

    Article  CAS  Google Scholar 

  8. Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

    Article  Google Scholar 

  9. Hanley, L. & Anderson, S.L. Production and collision-induced dissociation of small boron cluster ions. J. Phys. Chem. 91, 5161–5163 (1987).

    Article  CAS  Google Scholar 

  10. Hanley, L., Whitten, J.L. & Anderson, S.L. Collision-induced dissociation and ab initio studies of boron clusters ions: determination of structure and stabilities. J. Phys. Chem. 92, 5803–5812 (1988).

    Article  CAS  Google Scholar 

  11. Hintz, P.A., Sowa, M.B., Ruatta, S.A. & Anderson, S.L. Reactions of boron cluster ions (Bn+, n = 2–24) with N2O: NO versus NN bond activation as a function of size. J. Chem. Phys. 94, 6446–6458 (1991).

    Article  CAS  Google Scholar 

  12. Sowa-Resat, M.B., Smolanoff, A.L., Lapicki, A. & Anderson, S.L. Interaction of small boron cluster ions with HF. J. Chem. Phys. 106, 9511–9522 (1997).

    Article  CAS  Google Scholar 

  13. La Placa, S.J., Roland, P.A. & Wynne, J.J. Boron clusters (Bn, n = 2–52) produced by laser ablation of hexagonal boron nitride. Chem. Phys. Lett. 190, 163–168 (1992).

    Article  CAS  Google Scholar 

  14. Kawai, R. & Weare, J.H. Instability of the B12 icosahedral cluster: rearrangement to a lower energy structure. J. Chem. Phys. 95, 1151–1159 (1991).

    Article  CAS  Google Scholar 

  15. Kwai, R. & Weare, J.H. Anomalous stability of B13+ clusters. Chem. Phys. Lett. 191, 311–314 (1992).

    Article  Google Scholar 

  16. Ray, A.K., Howard, I.A. & Kanal, K.M. Structure and bonding in small neutral and cationic boron clusters. Phys. Rev. B 45, 14247–14255 (1992).

    Article  CAS  Google Scholar 

  17. Bonacic-Koutecky, V., Fantucci, P. & Koutecky, J. Quantum chemistry of small clusters of elements of group Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chem. Rev. 91, 1035–1108 (1991).

    Article  CAS  Google Scholar 

  18. Kato, H., Yamashita, K. & Morokuma, K. Ab initio MO study of neutral and cationic boron clusters. Chem. Phys. Lett. 190, 361–366 (1992).

    Article  CAS  Google Scholar 

  19. Boustani, I. Systematic LSD investigation on cationic boron clusters – Bn+ (n = 2–14). Int. J. Quantum Chem. 52, 1081–1111 (1994).

    Article  CAS  Google Scholar 

  20. Boustani, I. Structure and stability of small boron clusters. A density functional theoretical study. Chem. Phys. Lett. 240, 135–140 (1995).

    Article  CAS  Google Scholar 

  21. Ricca, A. & Bauschlicher, C.W. The structure and stability of Bn+ clusters. Chem. Phys. 208, 233–242 (1996).

    Article  CAS  Google Scholar 

  22. Boustani, I. Systematic ab initio investigation of bare boron clusters: determination of the geometrical and electronic structures of Bn (n = 2–14). Phys. Rev. B 55, 16426–16438 (1997).

    Article  CAS  Google Scholar 

  23. Gu, F.L., Yang, X., Tang, A.C., Jiao, H. & Schleyer, P.v.R. Structure and stability of B13+ clusters. J. Comput. Chem. 19, 203–214 (1998).

    Article  CAS  Google Scholar 

  24. Fowler, J.E. & Ugalde, J.M. The curiously stable B13+ cluster and its neutral and anionic counterparts: the advantages of planarity. J. Phys. Chem. A 104, 397–403 (2000).

    Article  CAS  Google Scholar 

  25. Heldon, G.V., Kemper, P.R., Gotts, N.G. & Bowers, M.T. Isomers of small carbon cluster anions: linear chains with up to 20 atoms. Science 259, 1300–1302 (1993).

    Article  Google Scholar 

  26. Ho, K.M. et al. Structures of medium-sized silicon clusters. Nature 392, 582–585 (1998).

    Article  CAS  Google Scholar 

  27. Furche, F. et al. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 117, 6982–6990 (2002).

    Article  CAS  Google Scholar 

  28. Kronik, L., Fromherz, R., Ko, E.J., Gantefor, G. & Chelikowsky, J.R. Highest electron affinity as a predictor of cluster anion structures. Nature Mater. 1, 49–53 (2002).

    Article  CAS  Google Scholar 

  29. Massobrio, C., Pasquarello, A. & Car, R. First principles study of photoelectron spectra of Cun clusters. Phys. Rev. Lett. 75, 2104–2107 (1995).

    Article  CAS  Google Scholar 

  30. Boldyrev, A.I. & Wang, L.S. Beyond classical stoichiometry: experiment and theory. J. Phys. Chem. A 105, 10759–10775 (2001).

    Article  CAS  Google Scholar 

  31. Li, J., Li, X., Zhai, H.J. & Wang, L.S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).

    Article  CAS  Google Scholar 

  32. Zhai, H.J., Wang, L.S., Alexandrova, A.N. & Boldyrev, A.I. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 117, 7917–7924 (2002).

    Article  CAS  Google Scholar 

  33. Alexandrova, A.N. et al. Structure and bonding in B6 and B6: planarity and antiaromaticity. J. Phys. Chem. A 107, 1359–1369 (2003).

    Article  CAS  Google Scholar 

  34. Wang, L.S. & Li, X. in Clusters and Nanostructure Interfaces (eds Jena, P., Khanna, S.N. & Rao, B.K.) 293–300 (World Scientific, New Jersey, 2000).

    Book  Google Scholar 

  35. Lipscomb, W.N. Three-center bonds in electron-deficient compounds. The localized molecular orbital approach. Acc. Chem. Rec. 6, 257–262 (1973).

    Article  CAS  Google Scholar 

  36. Aihara, J. Three-dimensional aromaticity of polyhedral boranes. J. Am. Chem. Soc. 100, 3339–3342 (1978).

    Article  CAS  Google Scholar 

  37. King, R.B., Dai, B. & Gimarc, B.M. Three-dimensional aromaticity in deltahedral borane anions: comparison of topological and computational approaches. Inorg. Chim. Acta 167, 213–222 (1990).

    Article  CAS  Google Scholar 

  38. Schleyer, P.v.R., Najafian, K. & Mebel, A.M. The large closo-borane dianions, BnHn2− (n = 13–17), are aromatic, why are they unknown? Inorg. Chem. 37, 6765–6772 (1998).

    Article  CAS  Google Scholar 

  39. Aihara, J. B13+ is highly aromatic. J. Phys. Chem. A 105, 5486–5489 (2001).

    Article  CAS  Google Scholar 

  40. Breslow, R. Antiaromaticity. Acc. Chem. Res. 6, 393–398 (1973).

    Article  CAS  Google Scholar 

  41. Baird, N.C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

    Article  CAS  Google Scholar 

  42. Choi, C.H. & Ketesz, M. Bond length alternation and aromaticity in large annulenes. J. Chem. Phys. 108, 6681–6688 (1998).

    Article  CAS  Google Scholar 

  43. Boustani, I. New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997).

    Article  CAS  Google Scholar 

  44. Boustani, I. Ab initio study of B32 clusters: competition between spherical, quasiplanar and tubular isomers. Chem. Phys. Lett. 311, 21–28 (1999).

    Article  CAS  Google Scholar 

  45. ADF 2002, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (http://www.scm.com)

  46. Perdew, J.P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  47. van Gisbergen, S.J.A., Snijders, J.G. & Baerends, E.J. Implementation of time-dependent density functional response equations. Comput. Phys. Commun. 118, 119–138 (1999).

    Article  CAS  Google Scholar 

  48. Ziegler, T., Rauk, A. & Baerends, E.J. On the calculation of multiplet energies by the Hartree–Fock–Slater method, Theor. Chim. Acta 43, 261–269 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (DMR-0095828) and partly by the Petroleum Research Fund administered by the American Chemical Society and performed at the EMSL, a national scientific user facility sponsored by Department of Energy's (DOE) Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle. All the calculations were performed using supercomputers at EMSL Molecular Science Computing Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Sheng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Tables S1-S8 (PDF 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, HJ., Kiran, B., Li, J. et al. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nature Mater 2, 827–833 (2003). https://doi.org/10.1038/nmat1012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing