Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quasi-collective motion of nanoscale metal strings in metal surfaces

Abstract

Mass transport processes on metal surfaces play a key role in epitaxial growth and coarsening processes. They are usually described in terms of independent, statistical diffusion and attachment/detachment of individual metal adatoms or vacancies1,2. Here we present high-speed scanning tunnelling microscopy (video-STM) observations of the dynamic behaviour of five-atom-wide, hexagonally ordered strings of Au atoms embedded in the square lattice of the Au(100)-(1×1) surface that reveal quasi-collective lateral motion of these strings perpendicular to as well as along the string direction. The perpendicular motion can be ascribed to small atomic displacements in the strings induced by propagating kinks, which also provides a mechanism for the exchange of Au atoms between the two string ends, required for motion in string direction. In addition, quasi-one-dimensional transport of Au adatoms along the string boundaries may contribute to the latter phenomenon according to density functional calculations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic-scale structure and mobility of isolated 'hex' strings in the Au(100)-(1×1) surface.
Figure 2: Motion of 'hex' strings perpendicular to the string direction.
Figure 3: Motion of 'hex' strings parallel to the string direction.

Similar content being viewed by others

References

  1. Brune, H. Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31, 121–229 (1998).

    Article  CAS  Google Scholar 

  2. Giesen, M. Step and island dynamics at solid vacuum and solid/liquid interfaces. Prog. Surf. Sci. 68, 1–153 (2001).

    Article  CAS  Google Scholar 

  3. van Hove, M.A. et al. The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surf. Sci. 103, 189–217 (1981).

    Article  CAS  Google Scholar 

  4. Rieder, K.H., Engel, T., Swendsen, R.H. & Manninen, M. A helium diffraction study of the reconstructed Au(100) surface. Surf. Sci. 127, 223–242 (1983).

    Article  CAS  Google Scholar 

  5. Gibbs, D., Ocko, B.M., Zehner, D.M. & Mochrie, S.G.J. Structure and phases of the Au(001) surface-inplane structure. Phys. Rev. B 42, 7330–7344 (1990).

    Article  CAS  Google Scholar 

  6. Naumovets, A.G. in Phase Transitions and Adsorbate Restructuring at Metal Surfaces vol. 7. (eds King, D.A. & Woodruff, D.P.) 163–213 (Elsevier, Amsterdam, 1994).

    Book  Google Scholar 

  7. Magnussen, O.M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 102, 679–725 (2002).

    Article  CAS  Google Scholar 

  8. Kolb, D.M. Reconstruction phenomena at metal-electrolyte interfaces. Prog. Surf. Sci. 51, 109–173 (1996).

    Article  CAS  Google Scholar 

  9. Kolb, D.M. & Schneider, J. The study of reconstructed electrode surfaces: Au(100)-(5×20). Surf. Sci. 162, 764–775 (1985).

    Article  CAS  Google Scholar 

  10. Ocko, B.M., Wang, J., Davenport, A.J. & Isaacs, H.S. In situ X-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys. Rev. Lett. 65, 1466–1469 (1990).

    Article  CAS  Google Scholar 

  11. Gao, X., Hamelin, A. & Weaver, M.J. Potential-dependent reconstruction at ordered Au(100)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Phys. Rev. Lett. 67, 618–621 (1991).

    Article  CAS  Google Scholar 

  12. Gao, X. & Weaver, M.J. Electrode potential-induced reconstruction of Au(100): Effect of chemisorption on nanoscale dynamics as probed by in-situ scanning tunneling microscopy. J. Phys. Chem. 97, 8685–8689 (1993).

    Article  CAS  Google Scholar 

  13. Magnussen, O.M., Hotlos, J., Behm, R.J., Batina, N. & Kolb, D.M. An in-situ scanning tunneling microscopy study of electrochemically induced 'hex' <-> transitions on Au(100) electrodes. Surf. Sci. 296, 310–332 (1993).

    Article  CAS  Google Scholar 

  14. Zitzler, L., Gleich, B., Magnussen, O.M. & Behm, R.J. Electrochemical video-STM. Proc. Electrochem. Soc. 99–28, 29–38 (2000).

    Google Scholar 

  15. Magnussen, O.M., Zitzler, L., Gleich, B., Vogt, M.R. & Behm, R.J. In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochim. Acta 46, 3725–3733 (2001).

    Article  CAS  Google Scholar 

  16. Nabarro, F.R.N. Dislocations in solids vol. 3. (North-Holland, Amsterdam, 1983).

    Google Scholar 

  17. de la Figuera, J. et al. Direct observation of misfit dislocation glide on surfaces. Phys. Rev. Lett. 86, 3819–3822 (2001).

    Article  CAS  Google Scholar 

  18. Schmid, A.K., Bartelt, N.C., Hamilton, J.C., Carter, C.B. & Hwang, R.Q. Brownian motion of dislocations in thin films. Phys. Rev. Lett. 78, 3507–3510 (1997).

    Article  CAS  Google Scholar 

  19. Günther, S., Kopatzki, E., Bartelt, M.C., Evans, J.W. & Behm, R.J. Anisotropy in nucleation and growth of two-dimensional islands during homoepitaxy on 'hex' reconstructed Au(100). Phys. Rev. Lett. 73, 553–556 (1994).

    Article  Google Scholar 

  20. Bönig, L., Liu, S. & Metiu, H. An effective medium theory study of Au islands on the Au(100) surface: reconstruction, adatom diffusion, and island formation. Surf. Sci. 365, 87–95 (1996).

    Article  Google Scholar 

  21. Yu, B.D. & Scheffler, M. Physical origin of exchange diffusion on f.c.c.(100) metal surfaces. Phys. Rev. B 56, R15569–R15572 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft and a fellowship for M.L. by the Alexander von Humboldt-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Magnussen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41563_2003_BFnmat1011_MOESM1_ESM.mov

Movie captionIn situ STM video of Au(100) in 0.01 M Na2SO4 + 0.001 M HCI, recorded directly after a potential step from +0.45 to -0.1 V (15 frames/s, 240 x 390 Å2). The video shows the initial growth and lateral mobility of isolated "hex" strings, the growth of "hex" string along an isolated string, and the residual lateral mobility of the resulting double string. (MOV 1640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labayen, M., Ramirez, C., Schattke, W. et al. Quasi-collective motion of nanoscale metal strings in metal surfaces. Nature Mater 2, 783–787 (2003). https://doi.org/10.1038/nmat1011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing