Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities

Abstract

The discovery of endogenous bioactive peptides has typically required a lengthy identification process. Computer-assisted analysis of cDNA and genomic DNA sequence information can markedly shorten the process. A bioinformatic analysis of full-length, enriched human cDNA libraries searching for previously unidentified bioactive peptides resulted in the identification and characterization of two related peptides of 28 and 20 amino acids, which we designated salusin-α and salusin-β. Salusins are translated from an alternatively spliced mRNA of TOR2A, a gene encoding a protein of the torsion dystonia family. Intravenous administration of salusin-α or salusin-β to rats causes rapid, profound hypotension and bradycardia. Salusins increase intracellular Ca2+, upregulate a variety of genes and induce cell mitogenesis. Salusin-β stimulates the release of arginine-vasopressin from rat pituitary. Expression of TOR2A mRNA and its splicing into preprosalusin are ubiquitous, and immunoreactive salusin-α and salusin-β are detected in many human tissues, plasma and urine, suggesting that salusins are endocrine and/or paracrine factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of TOR2A, preprosalusin mRNA, and the preprosalusin, prosalusin, salusin-α(29Gly), salusin-α and salusin-β proteins.
Figure 2: Mitogenic activity of salusins.
Figure 3: Effects of intravenous administration of salusins on MAP and heart rate.
Figure 4: AVP release from perifused rat pituitaries as a function of salusin-β concentration.
Figure 5: Expression of preprosalusin in human tissues and cells.
Figure 6: Presence of salusin-like immunoreactivity in human tissues, plasma and urine, as well as supernatant from cells transfected with preprosalusin cDNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  Google Scholar 

  2. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  Google Scholar 

  3. Ames, R.S. et al. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401, 282–286 (1999).

    Article  CAS  Google Scholar 

  4. Hinuma, S. et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2, 703–708 (2000).

    Article  CAS  Google Scholar 

  5. Black, D.L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000).

    Article  CAS  Google Scholar 

  6. Jung, L.J., Kreiner, T. & Scheller, R.H. Prohormone structure governs proteolytic processing and sorting in the Golgi complex. Recent Prog. Hormone Res. 48, 415–436 (1993).

    Article  CAS  Google Scholar 

  7. Seidah, N.G. & Chretien, M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45–62 (1999).

    Article  CAS  Google Scholar 

  8. Steiner, D.F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998).

    Article  CAS  Google Scholar 

  9. Eipper, B.A., Bloomquist, B.T., Husten, E.J., Milgram, S.L. & Mains, R.E. Peptidylglycine α-amidating monooxygenase and other processing enzymes in the neurointermediate pituitary. Ann. New York Acad. Sci. 680, 147–160 (1993).

    Article  CAS  Google Scholar 

  10. Suzuki, Y., Yoshitomo-Nakagawa, K., Maruyama, K., Suyama, A. & Sugano, S. Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library. Gene 200, 149–156 (1997).

    Article  CAS  Google Scholar 

  11. Salamov, A.A., Nishikawa, T. & Swindells, M.B. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 14, 384–390 (1998).

    Article  CAS  Google Scholar 

  12. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  Google Scholar 

  13. Ozelius, L.J. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40–48 (1997).

    Article  CAS  Google Scholar 

  14. Ozelius, L.J. et al. The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics 62, 377–384 (1999).

    Article  CAS  Google Scholar 

  15. Hinson, J.P., Kapas, S. & Smith, D.M. Adrenomedullin, a multifunctional regulatory peptide. Endocrine Rev. 21, 138–167 (2000).

    CAS  Google Scholar 

  16. Ota, T. et al. High throughput screening of genes encoding secreted and membrane proteins in silico from full length-enriched cDNA libraries. Microb. Comp. Genomics C,87 (1988).

  17. Shichiri, M., Kato, H., Doi, M., Marumo, F. & Hirata, Y. Induction of Max by adrenomedullin and calcitonin gene-related peptide antagonizes endothelial apoptosis. Mol. Endocrinol. 13, 1353–1363 (1999).

    Article  CAS  Google Scholar 

  18. Shichiri, M., Yokokura, M., Marumo, F. & Hirata, Y. Endothelin-1 inhibits apoptosis of vascular smooth muscle cells induced by nitric oxide and serum deprivation via MAP kinase pathway. Arteriosclerosis Thromb. Vasc. Biol. 20, 989–997 (2000).

    Article  CAS  Google Scholar 

  19. Ito, H. et al. Insulin-like growth factor-1 induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 87, 1715–1721 (1993).

    Article  CAS  Google Scholar 

  20. Prouty, S.M. et al. A cell culture model system for genetic analyses of the cell cycle by targeted homologous recombination. Oncogene 8, 899–907 (1993).

    CAS  PubMed  Google Scholar 

  21. Shichiri, M. & Hirata, Y. Antiangiogenesis signals by endostatin. FASEB J. 15, 1044–1053 (2001).

    Article  CAS  Google Scholar 

  22. Shichiri, M. et al. Endothelin-1 is an autocrine/paracrine growth factor for human cancer cell lines. J. Clin. Invest. 87, 1867–1871 (1991).

    Article  CAS  Google Scholar 

  23. Kato, H., Shichiri, M., Marumo, F. & Hirata, Y. Adrenomedullin as an autocrine/paracrine apoptosis survival factor for rat endothelial cells. Endocrinology 138, 2615–2620 (1997).

    Article  CAS  Google Scholar 

  24. Doi, M., Shichiri, M., Katsuyama, K., Marumo, F. & Hirata, Y. Cytokine-activated p42/p44 MAP kinase is involved in inducible nitric oxide synthase gene expression independent from NF-κB activation in vascular smooth muscle cells. Hypertens. Res. 23, 643–649 (2000).

    Article  CAS  Google Scholar 

  25. Hanson, K.D., Shichiri, M., Follansbee, M.R. & Sedivy, J.M. Effects of c-myc expression on cell cycle progression. Mol. Cell. Biol. 14, 5748–5755 (1994).

    Article  CAS  Google Scholar 

  26. Eatman, D., Stallone, J.N., Rutecki, G.W. & Whittier, F.C. Sex differences in extracellular and intracellular calcium-mediated vascular reactivity to vasopressin in rat aorta. Eur. J. Pharmacol. 361, 207–216 (1998).

    Article  CAS  Google Scholar 

  27. Ishimaru, S., Shichiri, M., Mineshita, S. & Hirata, Y. Role of endothelin-1/endothelin receptor system in endotoxic shock rats. Hypertens. Res. 24, 119–126 (2001).

    Article  CAS  Google Scholar 

  28. Shichiri, M. et al. Effect of endothelin-1 on release of arginine-vasopressin from perifused rat hypothalamus. Biochem. Biophys. Res. Commun. 163, 1332–1337 (1989).

    Article  CAS  Google Scholar 

  29. Matsushita, M. et al. Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J. Hypertens. 19, 2185–2190 (2001).

    Article  CAS  Google Scholar 

  30. Shichiri, M., Yoshinaga, K., Hisatomi, H., Sugihara, K. & Hirata, Y. Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival. Cancer Res. 62, 13–17 (2002).

    CAS  PubMed  Google Scholar 

  31. Doi, M., Shichiri, M., Yoshida, M., Marumo, F. & Hirata, Y. Suppression of integrin αv expression by endothelin-1 in vascular smooth muscle cells. Hypertens. Res. 23, 643–649 (2000).

    Article  CAS  Google Scholar 

  32. Iwasaki, H., Sato, R., Shichiri, M. & Hirata, Y. A patient with type 1 diabetes mellitus and cerebellar ataxia associated with high titer of circulating anti-glutamic acid decarboxylase antibodies. Endocrine J. 48, 261–268 (2001).

    Article  CAS  Google Scholar 

  33. Shichiri, M., Tanaka, A. & Hirata, Y. Intravenous gene therapy for familial hypercholesterolemia using ligand-facilitated transfer of a liposome:LDL receptor gene complex. Gene Ther. 10, 827–831 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Tokyo Research Laboratories and the Pharmaceutical Research Institute of Kyowa Hakko Kogyo Co. Ltd; K. Shibata and M. Koike for peptide design and synthesis; K. Sasaki for priceless comments and critical reviews; A. Yoshimatsu and S. Shirakura for studies of isolated blood vessels; K. Kurata-Miura for conventional RT-PCR; H. Kawai for sequence analysis; and A. Furuya for advice. We thank S.H. Yamaguchi and H. Yasuda for technical assistance; K. Ishizaka and H. Tanaka for surgically resected tissues; and K.D. Hanson for critical reviews and valuable feedback with constructive comments. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (C) 'Medical Genome Science', and a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, both to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Shichiri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shichiri, M., Ishimaru, S., Ota, T. et al. Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med 9, 1166–1172 (2003). https://doi.org/10.1038/nm913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing