Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect

Abstract

The mechanisms of retinoid activity in tumors remain largely unknown. Here we establish that retinoids cause extensive apoptosis of medulloblastoma cells. In a xenograft model, retinoids largely abrogated tumor growth. Using receptor-specific retinoid agonists, we defined a subset of mRNAs that were induced by all active retinoids in retinoid-sensitive cell lines. We also identified bone morphogenetic protein-2 (BMP-2) as a candidate mediator of retinoid activity. BMP-2 protein induced medulloblastoma cell apoptosis, whereas the BMP-2 antagonist noggin blocked both retinoid and BMP-2-induced apoptosis. BMP-2 also induced p38 mitogen-activated protein kinase (MAPK), which is necessary for BMP-2- and retinoid-induced apoptosis. Retinoid-resistant medulloblastoma cells underwent apoptosis when treated with BMP-2 or when cultured with retinoid-sensitive medulloblastoma cells. Retinoid-induced expression of BMP-2 is thus necessary and sufficient for apoptosis of retinoid-responsive cells, and expression of BMP-2 by retinoid-sensitive cells is sufficient to induce apoptosis in surrounding retinoid-resistant cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retinoid activity in primary tumors and D283 xenografts.
Figure 2: Retinoid-induced apoptosis and neurogenesis in medulloblastoma cell lines.
Figure 3: RAR agonist-induced changes in gene expression.
Figure 4: BMP-2 activity on medulloblastoma cells.

Similar content being viewed by others

References

  1. Sidell, N., Altman, A., Haussler, M.R. & Seeger, R.C. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell. Res. 148, 21–30 (1983).

    Article  CAS  Google Scholar 

  2. Matthay, K.K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999).

    Article  CAS  Google Scholar 

  3. Lin, R.J., Sternsdorf, T., Tini, M. & Evans, R.M. Transcriptional regulation in acute promyelocytic leukemia. Oncogene 20, 7204–7215 (2001).

    Article  CAS  Google Scholar 

  4. Altucci, L. & Gronemeyer, H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer 1, 181–193 (2001).

    Article  CAS  Google Scholar 

  5. Packer, R.J., Cogen, P., Vezina, G. & Rorke, L.B. Medulloblastoma: clinical and biologic aspects. Neuro-oncology 1, 232–250 (1999).

    Article  CAS  Google Scholar 

  6. Yamamoto, M., McCaffery, P. & Drager, U.C. Influence of the choroid plexus on cerebellar development: analysis of retinoic acid synthesis. Brain Res. Dev. Brain Res. 93, 182–190 (1996).

    Article  CAS  Google Scholar 

  7. Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954 (1996).

    Article  CAS  Google Scholar 

  8. McBurney, M.W., Jones-Villeneuve, E.M., Edwards, M.K. & Anderson, P.J. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299, 165–167 (1982).

    Article  CAS  Google Scholar 

  9. Wang, Q. et al. 1,25-dihydroxyvitamin D3 and retonic acid analogues induce differentiation in breast cancer cells with function- and cell-specific additive effects. Breast Cancer Res. Treat. 67, 157–168 (2001).

    Article  CAS  Google Scholar 

  10. Chandraratna, R.A. Tazarotene—first of a new generation of receptor-selective retinoids. Br. J. Dermatol. 135 (suppl. 49), 18–25 (1996).

    Article  CAS  Google Scholar 

  11. Eberhart, C.G. et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94, 552–560 (2002).

    Article  Google Scholar 

  12. Evans, A.E. et al. Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin. Cancer Res. 5, 3594–3602 (1999).

    CAS  PubMed  Google Scholar 

  13. Johnson, A.T., Wang, L., Standeven, A.M., Escobar, M. & Chandraratna, R.A. Synthesis and biological activity of high-affinity retinoic acid receptor antagonists. Bioorg. Med. Chem. 7, 1321–1338 (1999).

    Article  CAS  Google Scholar 

  14. Nie, X.F., Maclean, K.N., Kumar, V., McKay, I.A. & Bustin, S.A. ERF-2, the human homologue of the murine Tis11d early response gene. Gene 152, 285–286 (1995).

    Article  CAS  Google Scholar 

  15. Johnson, B.A., Geha, M. & Blackwell, T.K. Similar but distinct effects of the tristetraprolin/TIS11 immediate-early proteins on cell survival. Oncogene 19, 1657–1664 (2000).

    Article  CAS  Google Scholar 

  16. Sheikh, M.S., Hollander, M.C. & Fornance, A.J., Jr. Role of Gadd45 in apoptosis. Biochem. Pharmacol. 59, 43–45 (2000).

    Article  CAS  Google Scholar 

  17. Rodriguez-Leon, J. et al. Retinoic acid regulates programmed cell death through BMP signalling. Nat. Cell Biol. 1, 125–126 (1999).

    Article  CAS  Google Scholar 

  18. Ghatpande, S., Ghatpande, A., Sher, J., Zile, M.H. & Evans, T. Retinoid signaling regulates primitive (yolk sac) hematopoiesis. Blood 99, 2379–2386 (2002).

    Article  CAS  Google Scholar 

  19. Caricasole, A., Ward-van Oostwaard, D., Zeinstra, L., van den Eijnden-van Raaij, A. & Mummery, C. Bone morphogenetic proteins (BMPs) induce epithelial differentiation of NT2D1 human embryonal carcinoma cells. Int. J. Dev. Biol. 44, 443–450 (2000).

    CAS  PubMed  Google Scholar 

  20. Kawamura, C. et al. Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3. Blood 96, 2005–2011 (2000).

    CAS  PubMed  Google Scholar 

  21. Zhu, G., Mehler, M.F., Zhao, J., Yu Yung, S. & Kessler, J.A. Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev. Biol. 215, 118–129 (1999).

    Article  CAS  Google Scholar 

  22. Goodrich, L.V. & Scott, M.P. Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257 (1998).

    Article  CAS  Google Scholar 

  23. Iantosca, M.R., McPherson, C.E., Ho, S.Y. & Maxwell, G.D. Bone morphogenetic proteins-2 and -4 attenuate apoptosis in a cerebellar primitive neuroectodermal tumor cell line. J. Neurosci. Res. 56, 248–258 (1999).

    Article  CAS  Google Scholar 

  24. Mehler, M.F., Mabie, P.C., Zhang, D. & Kessler, J.A. Bone morphogenetic proteins in the nervous system. Trends Neurosci. 20, 309–317 (1997).

    Article  CAS  Google Scholar 

  25. Song, Q., Mehler, M.F. & Kessler, J.A. Bone morphogenetic proteins induce apoptosis and growth factor dependence of cultured sympathoadrenal progenitor cells. Dev. Biol. 196, 119–127 (1998).

    Article  CAS  Google Scholar 

  26. Zimmerman, L.B., De Jesus-Escobar, J.M. & Harland, R.M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  27. Smith, W.C. & Harland, R.M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    Article  CAS  Google Scholar 

  28. Lamb, T.M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    Article  CAS  Google Scholar 

  29. McMahon, J.A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    Article  CAS  Google Scholar 

  30. Lim, D.A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  Google Scholar 

  31. Rosenzweig, B.L. et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl. Acad. Sci. USA 92, 7632–7636 (1995).

    Article  CAS  Google Scholar 

  32. Penton, A. et al. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78, 239–250 (1994).

    Article  CAS  Google Scholar 

  33. Hoodless, P.A. et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500 (1996).

    Article  CAS  Google Scholar 

  34. Liu, F. et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623 (1996).

    Article  CAS  Google Scholar 

  35. Kimura, N., Matsuo, R., Shibuya, H., Nakashima, K. & Taga, T. BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J. Biol. Chem. 275, 17647–17652 (2000).

    Article  CAS  Google Scholar 

  36. Yu, L., Hebert, M.C. & Zhang, Y.E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21, 3749–3759 (2002).

    Article  CAS  Google Scholar 

  37. Tong, L. et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol. 4, 311–316 (1997).

    Article  CAS  Google Scholar 

  38. Kastner, P., Mark, M. & Chambon, P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  Google Scholar 

  39. Maria, B.L. et al. The modulation of astrocytic differentiation in cells derived from a medulloblastoma surgical specimen. J. Neurooncol. 7, 329–338 (1989).

    Article  CAS  Google Scholar 

  40. Keles, G.E., Berger, M.S., Schofield, D. & Bothwell, M. Nerve growth factor receptor expression in medulloblastomas and the potential role of nerve growth factor as a differentiating agent in medulloblastoma cell lines. Neurosurgery 32, 274–280 (1993).

    Article  CAS  Google Scholar 

  41. Liu, J., Guo, L., Luo, Y., Li, J.W. & Li, H. All trans-retinoic acid suppresses in vitro growth and down-regulates LIF gene expression as well as telomerase activity of human medulloblastoma cells. Anticancer Res. 20, 2659–2664 (2000).

    CAS  PubMed  Google Scholar 

  42. Altucci, L. et al. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat. Med. 7, 680–686 (2001).

    Article  CAS  Google Scholar 

  43. Berman, D.M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  Google Scholar 

  44. Rostomily, R.C. et al. Expression of neurogenic basic helix-loop-helix genes in primitive neuroectodermal tumors. Cancer Res. 57, 3526–3531 (1997).

    CAS  PubMed  Google Scholar 

  45. Farah, M.H. et al. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702 (2000).

    CAS  PubMed  Google Scholar 

  46. Olson, J.M. et al. NeuroD2 is necessary for development and survival of central nervous system neurons. Dev. Biol. 234, 174–187 (2001).

    Article  CAS  Google Scholar 

  47. Conley, B.A. et al. Antitumor activity, distribution, and metabolism of 13-cis-retinoic acid as a single agent or in combination with tamoxifen in established human MCF-7 xenografts in mice. Cancer Chemother. Pharmacol. 43, 183–197 (1999).

    Article  CAS  Google Scholar 

  48. Shalinsky, D.R. et al. Retinoid-induced suppression of squamous cell differentiation in human oral squamous cell carcinoma xenografts (line 1483) in athymic nude mice. Cancer Res. 55, 3183–3191 (1995).

    CAS  PubMed  Google Scholar 

  49. Tomayko, M.M. & Reynolds, C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148–154 (1989).

    Article  CAS  Google Scholar 

  50. Strand, A.D., Olson, J.M. & Kooperberg, C. Estimating the statistical significance of gene expression changes observed with oligonucleotide arrays. Hum. Mol. Genet. 11, 2207–2221 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate tissue procurement assistance from M. Bobola and M. Gross, neuropathology assistance from K. Patterson, statistical advice from M. LeBlanc and C. Kooperberg, and administrative assistance from S. Heiner and J. Stoeck. The microarray analyses were performed in the FHCRC DNA Array Shared Resource, which is directed by J. Delrow and supported by a grant from the W. Keck Foundation. This work was supported by an Emily Dorfman Foundation Fellowship (A.H.), an Immunex fellowship for interdisciplinary studies (A.H.), a Burroughs Wellcome Fund Career Award and Damon Runyon-Lilly Clinical Investigator Award (J.M.O.), and the Children's Hospital Seattle Brain Tumor Research Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M Olson.

Ethics declarations

Competing interests

R.A.S.C. is employed by Allergan, which provided a subset of the compounds used to elucidate the mechanism of retinoid-induced apoptosis.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallahan, A., Pritchard, J., Chandraratna, R. et al. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 9, 1033–1038 (2003). https://doi.org/10.1038/nm904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing