Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages

This article has been updated

Abstract

Immature dendritic cells are among the first cells infected by retroviruses after mucosal exposure. We explored the effects of human immunodeficiency virus-1 (HIV-1) and its Tat transactivator on these primary antigen-presenting cells using DNA microarray analysis and functional assays. We found that HIV-1 infection or Tat expression induces interferon (IFN)-responsive gene expression in immature human dendritic cells without inducing maturation. Among the induced gene products are chemokines that recruit activated T cells and macrophages, the ultimate target cells for the virus. Dendritic cells in the lymph nodes of macaques infected with simian immunodeficiency virus (SIV) have elevated levels of monocyte chemoattractant protein 2 (MCP-2), demonstrating that chemokine induction also occurs during retroviral infection in vivo. These results show that HIV-1 Tat reprograms host dendritic cell gene expression to facilitate expansion of HIV-1 infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tat expression and HIV-1 infection in iDC.
Figure 2: Expression analysis of primary iDC infected with HIV-1BAL and adeno-Tat.
Figure 3: Secretion of chemokines from primary dendritic cells expressing Tat.
Figure 4: MCP-2 expression and SIV infection in axillary lymph nodes.
Figure 5: a–b, Chemotaxis of monocytes (a) and activated T cells (b) induced by supernatants of iDC infected with adeno-Tat and HIV-1.

Similar content being viewed by others

Change history

  • 22 January 2003

    This is a significant change only. The supp info pdf was incorrectly formatted so the columns weren't lining up correctly. Editorial supplied a correctly formatted pdf.

References

  1. Stahl-Hennig, C. et al. Rapid infection of oral mucosal-associated lymphoid tissue with simian immunodeficiency virus. Science 285, 1261–1265 (1999).

    Article  CAS  Google Scholar 

  2. Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    Article  CAS  Google Scholar 

  3. Granelli-Piperno, A., Delgado, E., Finkel, V., Paxton, W. & Steinman, R.M. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J. Virol. 72, 2733–2737 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, J., Gardner, M.B. & Miller, C.J. Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J. Virol. 74, 6087–6095 (2000).

    Article  CAS  Google Scholar 

  5. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  6. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  7. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  8. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  Google Scholar 

  9. Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001).

    Article  CAS  Google Scholar 

  10. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  Google Scholar 

  11. Engelmayer, J. et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J. Immunol. 163, 6762–6768 (1999).

    CAS  Google Scholar 

  12. Grosjean, I. et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J. Exp. Med. 186, 801–812 (1997).

    Article  CAS  Google Scholar 

  13. de Noronha, C.M. et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294, 1105–1108 (2001).

    Article  CAS  Google Scholar 

  14. Viscidi, R.P., Mayur, K., Lederman, H.M. & Frankel, A.D. Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 246, 1606–1608 (1989).

    Article  CAS  Google Scholar 

  15. New, D.R., Ma, M., Epstein, L.G., Nath, A. & Gelbard, H.A. Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron cultures. J. Neurovirol. 3, 168–173 (1997).

    Article  CAS  Google Scholar 

  16. Swingler, S. et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nature Med. 5, 997–1103 (1999).

    Article  CAS  Google Scholar 

  17. Simmons, A., Aluvihare, V. & McMichael, A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777 (2001).

    Article  CAS  Google Scholar 

  18. Messner, D. et al. Endogenously expressed nef uncouples cytokine and chemokine prouction from membrane phenotypic maturation in dendritic cells. J. Immunol. 169, 4172–4182 (2002).

    Article  Google Scholar 

  19. Wu, Y. & Marsh, J.W. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293, 1503–1506 (2001).

    Article  CAS  Google Scholar 

  20. Jones, K.A. Taking a new TAK on tat transactivation. Genes Dev. 11, 2593–2599 (1997).

    Article  CAS  Google Scholar 

  21. Demarchi, F., Gutierrez, M.I. & Giacca, M. Human immunodeficiency virus type 1 tat protein activates transcription factor NF-κB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J. Virol. 73, 7080–7086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marzio, G. & Giacca, M. Chromatin control of HIV-1 gene expression. Genetica 106, 125–130 (1999).

    Article  CAS  Google Scholar 

  23. Chartier, C. et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, L. & Pagano, J.S. Review: structure and function of IRF-7. J. Interferon Cytokine Res. 22, 95–101 (2002).

    Article  Google Scholar 

  25. Ramana, C.V., Gil, M.P., Schreiber, R.D. & Stark, G.R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling. Trends Immunol. 23, 96–101 (2002).

    Article  CAS  Google Scholar 

  26. Bazan, J.F. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644 (1997).

    Article  CAS  Google Scholar 

  27. Luster, A.D., Unkeless, J.C. & Ravetch, J.V. γ-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315, 672–676 (1985).

    Article  CAS  Google Scholar 

  28. Piali, L. et al. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur. J. Immunol. 28, 961–972 (1998).

    Article  CAS  Google Scholar 

  29. Van Damme, J., Proost, P., Lenaerts, J.P. & Opdenakker, G. Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J. Exp. Med. 176, 59–65 (1992).

    Article  CAS  Google Scholar 

  30. Wu, L. et al. Rhesus macaque dendritic cells efficiently transmit primate lentiviruses independently of DC-SIGN. Proc. Natl. Acad. Sci. USA 99, 1568–1573 (2002).

    Article  CAS  Google Scholar 

  31. Smith, S.G., Patel, P.M., Selby, P.J. & Jackson, A.M. The response of human dendritic cells to recombinant adenovirus, recombinant Mycobacterium bovis Bacillus Calmette Guerin and biolistic methods of antigen delivery: different induction of contact-dependant and soluble signals. Immunol. Lett. 76, 79–88 (2001).

    Article  CAS  Google Scholar 

  32. Douek, D.C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  Google Scholar 

  33. Agostini, C. et al. CXC chemokines IP-10 and mig expression and direct migration of pulmonary CD8+/CXCR3+ T cells in the lungs of patients with HIV infection and T-cell alveolitis. Am. J. Respir. Crit. Care Med. 162, 1466–1473 (2000).

    Article  CAS  Google Scholar 

  34. Frankel, A.D. & Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  Google Scholar 

  35. Sen, G.C. Novel functions of interferon-induced proteins. Semin. Cancer Biol. 10, 93–101 (2000).

    Article  CAS  Google Scholar 

  36. Chang, Y.E. & Laimins, L.A. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J. Virol. 74, 4174–4182 (2000).

    Article  CAS  Google Scholar 

  37. Fujii, N., Yokosawa, N. & Shirakawa, S. Suppression of interferon response gene expression in cells persistently infected with mumps virus, and restoration from its suppression by treatment with ribavirin. Virus Res. 65, 175–185 (1999).

    Article  CAS  Google Scholar 

  38. Weihua, X. et al. The polyoma virus T antigen interferes with interferon-inducible gene expression. Proc. Natl. Acad. Sci. USA 95, 1085–1090 (1998).

    Article  CAS  Google Scholar 

  39. Miura, Y. et al. Critical contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to apoptosis of human CD4+ T cells in HIV-1-infected hu-PBL-NOD-SCID mice. J. Exp. Med. 193, 651–660 (2001).

    Article  CAS  Google Scholar 

  40. Katsikis, P.D. et al. Interleukin-1 beta converting enzyme-like protease involvement in Fas-induced and activation-induced peripheral blood T cell apoptosis in HIV infection. TNF-related apoptosis-inducing ligand can mediate activation-induced T cell death in HIV infection. J. Exp. Med. 186, 1365–1372 (1997).

    Article  CAS  Google Scholar 

  41. Fanales-Belasio, E. et al. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J. Immunol. 168, 197–206 (2002).

    Article  CAS  Google Scholar 

  42. Bender, A., Sapp, M., Schuler, G., Steinman, R.M. & Bhardwaj, N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196, 121–135 (1996).

    Article  CAS  Google Scholar 

  43. Liu, Y.J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001).

    Article  CAS  Google Scholar 

  44. Waldrop, S.L., Pitcher, C.J., Peterson, D.M., Maino, V.C. & Picker, L.J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest. 99, 1739–1750 (1997).

    Article  CAS  Google Scholar 

  45. Poon, D.T., Wu, J. & Aldovini, A. Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J. Virol. 70, 6607–6616 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.-S. Lee of the Harvard Gene Therapy Initiative Vector Core, supported in part by the Association Française contre les Myopathies, for providing the adeno-LacZ and adeno-Tat viruses; M. Stevenson for the adeno-Nef virus; D. Pokholok, G. Nau, J. Richmond, A. Schlesinger and E. Jennings for discussion and help with data analysis. This work was supported by NIH grants AI41365, AI44476, RR00169 and RR14555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Aldovini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailova, E., Bertley, F., Huang, Q. et al. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med 9, 191–197 (2003). https://doi.org/10.1038/nm822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing