Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor

Abstract

The four MEF2 transcription factors (MEF2A, -B, -C, and -D) regulate differentiation and calcium-dependent gene expression in muscle cells. We generated mice deficient in MEF2A, the predominant Mef2 gene product expressed in post-natal cardiac muscle. Most mice lacking Mef2a died suddenly within the first week of life and exhibited pronounced dilation of the right ventricle, myofibrillar fragmentation, mitochondrial disorganization and activation of a fetal cardiac gene program. The few Mef2a−/− mice that survived to adulthood also showed a deficiency of cardiac mitochondria and susceptibility to sudden death. Paradoxically, MEF2 transcriptional activity, revealed by the expression of a MEF2-dependent transgene, was enhanced in the hearts of Mef2a-mutant mice, reflecting the transcriptional activation of residual MEF2D. These findings reveal specific roles for MEF2A in maintaining appropriate mitochondrial content and cyto-architectural integrity in the post-natal heart and show that other MEF2 isoforms cannot support these activities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting strategy for Mef2a.
Figure 2: Sudden death and cardiac abnormalities in Mef2a−/− mice.
Figure 3: Mitochondrial and cyto-architectural defects in adult Mef2a mutant hearts.
Figure 4: Conduction defects in adult Mef2a mutant hearts.
Figure 5: Changes in gene expression and MEF2 activity in Mef2a−/− hearts.

Similar content being viewed by others

References

  1. Wallace, D. Mitochondrial defects in cardiomyopathy and neuromuscular disease. Amer. Heart J. 139, S70–S85 (2000).

    Article  CAS  Google Scholar 

  2. Towbin, J.A. & Lipshultz, S.E. Genetics of neonatal cardiomyopathy. Curr. Op. Card. 14, 250–262 (1999).

    Article  CAS  Google Scholar 

  3. Williams, R.S. Cardiac involvement in mitochondrial disease, and vice versa. Circulation 91, 1266–1268 (1995).

    Article  CAS  Google Scholar 

  4. Wallace, D.C. Mitochondrial diseases in man and mouse. Science. 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  5. Wang, J. et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nature Genet. 21, 133–137 (1999).

    Article  CAS  Google Scholar 

  6. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11, 376–381 (1995).

    Article  CAS  Google Scholar 

  7. Graham, B.H. et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nature Genet. 16, 226–234 (1997).

    Article  CAS  Google Scholar 

  8. Lehman, J.J. et al. Peroxisome proliferator-activated γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106 (7), 847–856.

  9. Black, B. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Ann. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    Article  CAS  Google Scholar 

  10. McKinsey, T., Zhang, C. & Olson, E.N. MEF2: A calcium-dependent regulator of cell division, differentiation, and death. Trends Biochem. Sci. 27, 40–47 (2002).

    Article  CAS  Google Scholar 

  11. Lesnefsky, E.J., Moghaddas, S., Tandler, B., Kerner, J. & Hoppel, C.L. Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure. J. Mol. Cell. Cardiol. 33, 1065–1089 (2001).

    Article  CAS  Google Scholar 

  12. Bonnet, D. et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100, 2248–2253 (1999).

    Article  CAS  Google Scholar 

  13. Ibdah, J.A. et al. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J. Clin. Invest. 107, 1403–1409 (2001).

    Article  CAS  Google Scholar 

  14. Muscat, G.E., Perry, S., Prentice, H. & Kedes, L. The human skeletal α-actin gene is regulated by a muscle-specific enhancer that binds three nuclear factors. Gene Expr. 2, 111–126 (1992).

    CAS  PubMed  Google Scholar 

  15. Woronicz, J.D. et al. Regulation of the Nur 77 orphan steroid receptor in activation-induced apoptosis. Mol. Cell Biol. 15, 6364–6376 (1995).

    Article  CAS  Google Scholar 

  16. Morin, S., Charron, F., Robitaille, L. & Nemer, M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19, 2046–2055 (2000).

    Article  CAS  Google Scholar 

  17. Ruiz-Lozano, P. et al. Energy deprivation and a deficiency in downstream metabolic target genes during the onset of embryonic heart failure in RXRα−/− embryos. Development 125, 533–544 (1998).

    CAS  PubMed  Google Scholar 

  18. Naya, F.J., Wu, C., Richardson, J.A., Overbeek, P. & Olson, E.N. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development. 126, 2045–2052 (1999).

    CAS  PubMed  Google Scholar 

  19. Passier, R, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105, 1395–1406 (2000).

    Article  CAS  Google Scholar 

  20. Zhang, C.L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  Google Scholar 

  21. Michael, L.F. et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. USA 27, 3820–3825 (2001).

    Article  Google Scholar 

  22. Marin-Garcia, J., Goldenthal, M.J. & Moe, G.W. Mitochondrial pathology in cardiac failure. Cardiovasc. Res. 49, 17–26 (2001).

    Article  CAS  Google Scholar 

  23. Antozzi, C. & Zeviani, M. Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc. Res. 35, 184–199 (1997).

    Article  CAS  Google Scholar 

  24. Marin-Garcia, J. & Goldenthal, M.J. Mitochondrial cardiomyopathy: Molecular and Biochemical Analysis. Pediatr. Cardiol. 18, 251–260 (1997).

    Article  CAS  Google Scholar 

  25. Zipes, D.P. & Wellens, H.J.J. Sudden cardiac death. Circulation 98, 2334–2351 (1998).

    Article  CAS  Google Scholar 

  26. Spooner, P.M. et al. Sudden cardiac death, genes, and arrhythmogenesis. Circulation 103, 2361–2364 (2001).

    Article  CAS  Google Scholar 

  27. Keating, M.T. & Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  Google Scholar 

  28. Kuo, H.C. et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 107, 801–813 (2001).

    Article  CAS  Google Scholar 

  29. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497–504 (2001).

    Article  CAS  Google Scholar 

  30. Lin, Q., Schwarz, J., Bucana, C. & Olson, E.N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407 (1997).

    Article  CAS  Google Scholar 

  31. Lin, Q. et al. Requirement of the MADS box transcription factor MEF2C for vascular development. Development 125, 4565–4574 (1998).

    CAS  PubMed  Google Scholar 

  32. Bossy-Wetzel, E. & Green, D.R. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J. Biol. Chem. 274, 17484–17490 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Tizenor for assistance with graphics and members of the Olson lab for advice throughout the course of this work. This study was supported by grants from the NIH, the Texas Advanced Technology Program, and the Donald W. Reynolds Foundation (to E.N.O.). F.J.N. was supported by a postdoctoral fellowship from the NIH

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Olson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naya, F., Black, B., Wu, H. et al. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8, 1303–1309 (2002). https://doi.org/10.1038/nm789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing