Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell–mediated suppression

Abstract

Regulatory T cells (Treg cells) suppress autoreactive immune responses and limit the efficacy of tumor vaccines; however, it remains a challenge to selectively eliminate or inhibit Treg cells. In this study, the zinc-finger A20, a negative regulator of the Toll-like receptor and tumor necrosis factor receptor signaling pathways, was found to play a crucial part in controlling the maturation, cytokine production and immunostimulatory potency of dendritic cells (DCs). A20-silenced DCs showed spontaneous and enhanced expression of costimulatory molecules and proinflammatory cytokines and had different effects on T cell subsets: they inhibited Treg cells and hyperactivated tumor-infiltrating cytotoxic T lymphocytes and T helper cells that produced interleukin-6 and tumor necrosis factor-α and were refractory to Treg cell–mediated suppression. Hence, this study identifies A20 as an antigen presentation attenuator in control of antitumor immune responses during both the priming and the effector phases and provides a strategy to overcome Treg cell–mediated suppression in an antigen-specific manner, reducing the need to directly target Treg cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A20 controls the maturation and cytokine production of DCs.
Figure 2: A20 negatively regulates the immunostimulatory potency of DCs.
Figure 3: Comparison of antitumor activity of siA20-DCs with CD25-specific antibody treatment.
Figure 4: Comparison of antitumor activity of siA20-DCs with that of siS1-DCs (siS1).
Figure 5: Contrasting effects of siA20-DCs on CTLs and Treg cells.
Figure 6: Effects of siA20-DCs on effector T cells.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg, S.A., Yang, J.C. & Restifo, N.P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenberg, S.A. et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8· T cells in patients with melanoma. J. Immunol. 175, 6169–6176 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Boon, T., Coulie, P.G., Van den Eynde, B.J. & van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Evel-Kabler, K. & Chen, S.Y. Dendritic cell–based tumor vaccines and antigen presentation attenuators. Mol. Ther. 13, 850–858 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi, S. Naturally arising Foxp3-expressing CD25·CD4· regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Woo, E.Y. et al. Regulatory CD4·CD25· T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61, 4766–4772 (2001).

    CAS  PubMed  Google Scholar 

  9. Curiel, T.J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H.Y. et al. Tumor-specific human CD4· regulatory T cells and their ligands: implications for immunotherapy. Immunity 20, 107–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25·CD4· T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  13. Sutmuller, R.P. et al. Synergism of cytotoxic T lymphocyte–associated antigen 4 blockade and depletion of CD25· regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quezada, S.A., Peggs, K.S., Curran, M.A. & Allison, J.P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stephens, G.L. et al. Engagement of glucocorticoid-induced TNFR family–related receptor on effector T cells by its ligand mediates resistance to suppression by CD4·CD25· T cells. J. Immunol. 173, 5008–5020 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Maker, A.V., Attia, P. & Rosenberg, S.A. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol. 175, 7746–7754 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Attia, P. et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T lymphocyte antigen-4. J. Clin. Oncol. 23, 6043–6053 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Sarma, V. et al. Activation of the B cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis. J. Biol. Chem. 270, 12343–12346 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Saitoh, T. et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J. Immunol. 174, 1507–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Bloom, M.B. et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 185, 453–459 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Elsas, A. et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194, 481–489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siegel, S., Wagner, A., Schmitz, N. & Zeis, M. Induction of antitumour immunity using survivin peptide–pulsed dendritic cells in a murine lymphoma model. Br. J. Haematol. 122, 911–914 (2003).

    Article  PubMed  Google Scholar 

  28. Ambrosini, G., Adida, C. & Altieri, D.C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3, 917–921 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Allouche, M. et al. Phorbol myristate acetate induces both high affinity and low affinity interleukin-2 receptors on a pre-B leukemic cell line. Leuk. Res. 14, 353–361 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Prasad, S.J. et al. Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4·CD25· regulatory T cells. J. Immunol. 174, 90–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Evel-Kabler, K., Song, X.T., Aldrich, M., Huang, X.F. & Chen, S.Y. SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J. Clin. Invest. 116, 90–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Shen, L., Evel-Kabler, K., Strube, R. & Chen, S.Y. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol. 22, 1546–1553 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Overwijk, W.W. Breaking tolerance in cancer immunotherapy: time to ACT. Curr. Opin. Immunol. 17, 187–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Pasare, C. & Medzhitov, R. Toll pathway–dependent blockade of CD4·CD25· T cell–mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kubo, T. et al. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J. Immunol. 173, 7249–7258 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Yamazaki, S. et al. Direct expansion of functional CD25+CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fehervari, Z. & Sakaguchi, S. Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int. Immunol. 16, 1769–1780 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ramirez-Montagut, T. et al. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J. Immunol. 176, 6434–6442 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Valencia, X. et al. TNF downmodulates the function of human CD4·CD25hi T regulatory cells. Blood 108, 253–261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. King, I.L. & Segal, B.M. Cutting edge: IL-12 induces CD4+CD25 T cell activation in the presence of T regulatory cells. J. Immunol. 175, 641–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Thornton, A.M. & Shevach, E.M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Vu, M.D. et al. OX40 costimulation turns off Foxp3+ Treg cells. Blood 110, 2501–2510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. So, T. & Croft, M. Cutting edge: OX40 inhibits TGF-β– and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J. Immunol. 179, 1427–1430 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schroers, R. & Chen, S.Y. Lentiviral transduction of human dendritic cells. Methods Mol. Biol. 246, 451–459 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Dutton at the Trudeau Institute for the B6-OVA melanoma cell line. We thank B. Hong, B. Liu, M. Aldrich, N. Lapteva, and A. Sharabi in the lab for technical assistance and valuable suggestions. We also thank M. Brenner, H. Heslop, C. Rooney, R.F. Wang and other colleagues for helpful suggestions and assistance. This work was supported by grants from the US National Institutes of Health (R01CA90427, R01CA116677 and R01AI68472 to S.-Y.C. and R01 CA100841 to X.F.H.), and the Leukemia and Lymphoma Society Specialized Center of Research Program.

Author information

Authors and Affiliations

Authors

Contributions

X.-T.S. and K.E.-K. designed and performed in vitro and in vivo experiments. L.S., L.R. and X.F.H. performed in vitro and in vivo experiments. S.-Y.C. designed this study, supervised this project and wrote the paper.

Corresponding author

Correspondence to Si-Yi Chen.

Ethics declarations

Competing interests

S.-Y.C. has an equity interest in ImmunoVac, Inc., which licensed this technology of the modulation of negative immune regulators and applications for immunotherapy.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–7 and Supplementary Methods (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, XT., Kabler, K., Shen, L. et al. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell–mediated suppression. Nat Med 14, 258–265 (2008). https://doi.org/10.1038/nm1721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing