Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human

Abstract

Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein1,2. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate3. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (SLC35D1) encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis4,5. Here we created Slc35d1-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human SLC35D1 cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of the Slc35d1-deficient mice.
Figure 2: Effects of impaired chondroitin sulfate synthesis on cartilage proteoglycan in Slc35d1-deficient mice.
Figure 3: Loss-of-function mutations of SLC35D1 in Schneckenbecken dysplasia.

Similar content being viewed by others

References

  1. Knudson, C.B. & Knudson, W. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69–78 (2001).

    Article  CAS  Google Scholar 

  2. Schwartz, N.B. & Domowicz, M. Chondrodysplasias due to proteoglycan defects. Glycobiology 12, 57R–68R (2002).

    Article  CAS  Google Scholar 

  3. Sugahara, K. & Kitagawa, H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527 (2000).

    Article  CAS  Google Scholar 

  4. Muraoka, M., Kawakita, M. & Ishida, N. Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett. 495, 87–93 (2001).

    Article  CAS  Google Scholar 

  5. Muraoka, M., Miki, T., Ishida, N., Hara, T. & Kawakita, M. Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono- and diphosphates. J. Biol. Chem. 282, 24615–24622 (2007).

    Article  CAS  Google Scholar 

  6. Plaas, A.H., Wong-Palms, S., Roughley, P.J., Midura, R.J. & Hascall, V.C. Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J. Biol. Chem. 272, 20603–20610 (1997).

    Article  CAS  Google Scholar 

  7. Superti-Furga, A. et al. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat. Genet. 12, 100–102 (1996).

    Article  CAS  Google Scholar 

  8. Hastbacka, J. et al. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 58, 255–262 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. ul Haque, M.F. et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat. Genet. 20, 157–162 (1998).

    Article  Google Scholar 

  10. Thiele, H. et al. Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc. Natl. Acad. Sci. USA 101, 10155–10160 (2004).

    Article  CAS  Google Scholar 

  11. Kluppel, M., Wight, T.N., Chan, C., Hinek, A. & Wrana, J.L. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 132, 3989–4003 (2005).

    Article  CAS  Google Scholar 

  12. Ishida, N. & Kawakita, M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447, 768–775 (2004).

    Article  CAS  Google Scholar 

  13. Toyoda, H., Kinoshita-Toyoda, A. & Selleck, S.B. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J. Biol. Chem. 275, 2269–2275 (2000).

    Article  CAS  Google Scholar 

  14. Ogihara, Y. et al. Biosynthesis of proteoglycan in bone and cartilage of parathyroid hormone–related protein knockout mice. J. Bone Miner. Metab. 19, 4–12 (2001).

    Article  CAS  Google Scholar 

  15. Borochowitz, Z. et al. A distinct lethal neonatal chondrodysplasia with snail-like pelvis: Schneckenbecken dysplasia. Am. J. Med. Genet. 25, 47–59 (1986).

    Article  CAS  Google Scholar 

  16. Giedion, A. et al. Case report 693. Skeletal Radiol. 20, 534–538 (1991).

    Article  CAS  Google Scholar 

  17. Nikkels, P.G., Stigter, R.H., Knol, I.E. & van der Harten, H.J. Schneckenbecken dysplasia, radiology and histology. Pediatr. Radiol. 31, 27–30 (2001).

    Article  CAS  Google Scholar 

  18. Superti-Furga, A. & Unger, S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am. J. Med. Genet. A. 143, 1–18 (2007).

    Article  Google Scholar 

  19. Thomsen, B. et al. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 16, 97–105 (2006).

    Article  CAS  Google Scholar 

  20. Joyner, A.L. Gene Targeting 1–146 (Oxford University Press, Oxford, UK, 1992).

    Google Scholar 

  21. Kessel, M. & Gruss, P. Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67, 89–104 (1991).

    Article  CAS  Google Scholar 

  22. Kessel, M. & Gruss, P. Murine developmental control genes. Science 249, 374–379 (1990).

    Article  CAS  Google Scholar 

  23. Shibata, S., Fukada, K., Imai, H., Abe, T. & Yamashita, Y. In situ hybridization and immunohistochemistry of versican, aggrecan and link protein, and histochemistry of hyaluronan in the developing mouse limb bud cartilage. J. Anat. 203, 425–432 (2003).

    Article  CAS  Google Scholar 

  24. Wallin, J. et al. The role of Pax-1 in axial skeleton development. Development 120, 1109–1121 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Nakayama (Kazusa DNA Research Institute) for donating the ES cell–BAC library. We are grateful to M. Muraoka for measurement of NST activity, to I. Kataoka and Y. Mizutani-Koseki for their assistance in histochemical analysis and in situ hybridization and to S. Tominaga for her help in genetic analysis of the human SLC35D1. This project was supported by Special Coordination Funds for the Promotion of Science and Technology from the Japanese Ministry of Education, Culture, Sports, Science and Technology (Contract Grant No. 13043003 to H.K.) and by grants-in-aid from the Ministry of Education, Culture, Sports and Science of Japan (Contract Grant No. 19209049), Research on Child Health and Development (Contract Grant Nos. 17C-1 and H18-005 to S.I.), the Ministry of Education, Culture, Sports and Science of Japan (Contract Grant No. 19510205 to S.H.) and the US National Institutes of Health (HD22657 and MO1-RR00425 to D.H.C. and D.L.R.). D.H.C. is the recipient of a Winnick Family Clinical Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and T.F. performed the main experiments, analyzed data and prepared the manuscript. G.N., D.L.R., A.S.-F., P.G.N. and D.H.C. recruited human subjects and analyzed the human phenotypic data. S.S. and M.Y. performed proteoglycan analysis in knockout mice. M.O. and K.K. generated knockout mice and carried out histological analysis. H.T. and A.K.-T. determined glycosaminoglycan content. N.I., K.I. and Y.S. assayed mouse Slc35d1 protein. H.K. and S.I. planned and supervised the mouse and human parts of the project, respectively.

Corresponding authors

Correspondence to Haruhiko Koseki or Shiro Ikegawa.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–3, Supplementary Tables 1 and 2, Supplementary Case Report (PDF 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraoka, S., Furuichi, T., Nishimura, G. et al. Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat Med 13, 1363–1367 (2007). https://doi.org/10.1038/nm1655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing