Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury

Abstract

The E3 ubiquitin ligase Cblb has a crucial role in the prevention of chronic inflammation and autoimmunity. Here we show that Cblb also has an unexpected function in acute lung inflammation. Cblb attenuates the sequestration of inflammatory cells in the lungs after administration of lipopolysaccharide (LPS). In a model of polymicrobial sepsis in which acute lung inflammation depends on the LPS receptor (Toll-like receptor 4, TLR-4), the loss of Cblb expression accentuates acute lung inflammation and reduces survival. Loss of Cblb significantly increases sepsis-induced release of inflammatory cytokines and chemokines. Cblb controls the association between TLR4 and the intracellular adaptor MyD88. Expression of wild-type Cblb, but not expression of a Cblb mutant that lacks E3 ubiquitin ligase function, prevents the activity of a reporter gene for the transcription factor nuclear factor-κB (NF-κB) in monocytes that have been challenged with LPS. The downregulation of TLR4 expression on the cell surface of neutrophils is impaired in the absence of Cblb. Our data reveal that Cblb regulates the TLR4-mediated acute inflammatory response that is induced by sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic deletion of Cblb augments sepsis-induced acute lung inflammation and mortality.
Figure 2: Cblb regulates lung microvascular endothelial integrity and PMN activation in response to LPS challenge.
Figure 3: Cblb regulates NF-κB activation after LPS challenge.
Figure 4: Deletion of Cblb augments sepsis-induced cytokine and chemokine production.
Figure 5: Cblb regulates the association between TLR4 and MyD88 after LPS stimulation.

Similar content being viewed by others

References

  1. MacCallum, N.S. & Evans, T.W. Epidemiology of acute lung injury. Curr. Opin. Crit. Care 11, 43–49 (2005).

    Article  PubMed  Google Scholar 

  2. Rubenfeld, G.D. et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353, 1685–1693 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Levy, H., Laterre, P.F., Bates, B. & Qualy, R.L. Steroid use in PROWESS severe sepsis patients treated with drotrecogin alfa (activated). Crit. Care 9, R502–R507 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thien, C.B.F. & Langdon, W.Y. Cbl: Many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2, 294–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoon, C.H., Lee, J.H., Jongeward, G.D. & Sternberg, P.W. Similarity of Sli-1, a regulator of vulvar development in C. elegans, to the mammalian protooncogene c-cbl. Science 269, 1102–1105 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Naramura, M. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat. Immunol. 3, 1192–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Chiang, Y.J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Jeon, M.S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21, 167–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Janeway, C.A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  15. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Beutler, B. & Poltorak, A. Sepsis and evolution of the innate immune response. Crit. Care Med. 29, S2–S6 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Litman, G.W., Anderson, M.K. & Rast, J. Evolution of antigen binding receptors. Annu. Rev. Immunol. 17, 109–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Liew, F.Y., Xu, D.M., Brint, E.K. & O'Neill, L.A.J. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Keane, M.M., Riverolezcano, O.M., Mitchell, J.A., Robbins, K.C. & Lipkowitz, S. Cloning and characterization of cbl-b—a Sh3 binding-protein with homology to the c-cbl protooncogene. Oncogene 10, 2367–2377 (1995).

    CAS  PubMed  Google Scholar 

  20. Alves-Filho, J.C., de Freitas, A., Russo, M. & Cunha, F.Q. Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit. Care Med. 34, 461–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Naccache, P.H. et al. Agonist-specific tyrosine phosphorylation of Cbl in human neutrophils. J. Leukoc. Biol. 62, 901–910 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Richards, G.A. The therapeutic challenge of Gram-negative sepsis: Prolonging the lifespan of a scarce resource. Clin. Microbiol. Infect. 11, 18–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Andonegui, G. et al. Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Invest. 111, 1011–1020 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ware, L.B. & Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ankermann, T. et al. Topical inhibition of nuclear factor-kappa B enhances reduction in lung edema by surfactant in a piglet model of airway lavage. Crit. Care Med. 33, 1384–1391 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Matsuda, N., Hattori, Y., Jesmin, S. & Gando, S. Nuclear factor-kappa B decoy oligodeoxynucleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis. Mol. Pharmacol. 67, 1018–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Barton, G.M. & Medzhitov, R. Toll-like receptor signaling pathways. Science 300, 1524–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ettenberg, S.A. et al. Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex. J. Biol. Chem. 276, 27677–27684 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Ettenberg, S.A. et al. cbl-b inhibits epidermal growth factor receptor signaling. Oncogene 18, 1855–1866 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Grove, M. & Plumb, M. C/Ebp, NF-κB, and C-Ets family members and transcriptional gegulation of the cell-specific and inducible macrophage inflammatory protein-1α immediate-early gene. Mol. Cell. Biol. 13, 5276–5289 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karin, M. & Greten, F.R. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, M.Y. et al. In vivo expression of neutrophil inhibitory factor via gene transfer prevents lipopolysaccharide-induced lung neutrophil infiltration and injury by a β2 integrin-dependent mechanism. J. Clin. Invest. 101, 2427–2437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W.Y. & Dikic, I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor IκBα—evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann, A., Levchenko, A., Scott, M.L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Standiford, T.J. et al. Macrophage inflammatory protein-1α mediates lung leukocyte recruitment, lung capillary leak, and early mortality in murine endotoxemia. J. Immunol. 155, 1515–1524 (1995).

    CAS  PubMed  Google Scholar 

  38. Shanley, T.P., Schmal, H., Friedl, H.P., Jones, M.L. & Ward, P.A. Role of macrophage inflammatory protein-1α (Mip-1α) in acute lung injury in rats. J. Immunol. 154, 4793–4802 (1995).

    CAS  PubMed  Google Scholar 

  39. Gao, J.L. et al. Impaired host defense, hematopoiesis, guanulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J. Exp. Med. 185, 1959–1968 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neumann, B. et al. Crucial role of 55-kilodalton TNF receptor in TNF-induced adhesion molecule expression and leukocyte organ infiltration. J. Immunol. 156, 1587–1593 (1996).

    CAS  PubMed  Google Scholar 

  41. Brueckmann, M. et al. Drotrecogin alfa (activated) inhibits NF-kappa B activation and MIP-1-alpha release from isolated mononuclear cells of patients with severe sepsis. Inflamm. Res. 53, 528–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi, K. et al. IRAK-M is a negative regulator of toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Deng, J.C. et al. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J. Clin. Invest. 116, 2532–2542 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chuang, T.H. & Ulevitch, R.J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 5, 495–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Iwata, A. et al. Over-expression of Bcl-2 provides protection in septic mice by a trans effect. J. Immunol. 171, 3136–3141 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hickey, M.J. et al. Inducible nitric oxide synthase (iNOS) in endotoxemia: chimeric mice reveal different cellular sources in various tissues. FASEB J. 16, 1141–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Tiruppathi, C. et al. Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ. Res. 91, 70–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Blackwell, T.S. et al. Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation. Am. J. Respir. Crit. Care Med. 162, 1095–1101 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Bosco, M.C. et al. The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1 alpha and -1 beta in macrophages. J. Immunol. 164, 3283–3291 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Melkonyan, H., Sorg, C. & Klempt, M. Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res. 24, 4356–4357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L.A. Benoit and K. Wary for discussions, K. Price for critical reading of the manuscript, Y. Wu for technical assistance, and S. Lipkowitz of the US National Cancer Institute for Cblb expression vector constructs. This work was supported by US National Institutes of Health grants P01 HL77806, PO1 HL60678 and T32 HL 07829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Bachmaier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmaier, K., Toya, S., Gao, X. et al. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nat Med 13, 920–926 (2007). https://doi.org/10.1038/nm1607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing