Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis

Abstract

The von Hippel-Lindau tumor suppressor, pVHL, forms part of an E3 ubiquitin ligase complex that targets specific substrates for degradation, including hypoxia-inducible factor-1α (HIF-1α), which is involved in tumor progression and angiogenesis. It remains unclear, however, how pVHL is destabilized. Here we show that E2-EPF ubiquitin carrier protein (UCP) associates with and targets pVHL for ubiquitin-mediated proteolysis in cells, thereby stabilizing HIF-1α. UCP is detected coincidently with HIF-1α in human primary liver, colon and breast tumors, and metastatic cholangiocarcinoma and colon cancer cells. UCP level correlates inversely with pVHL level in most tumor cell lines. In vitro and in vivo, forced expression of UCP boosts tumor-cell proliferation, invasion and metastasis through effects on the pVHL-HIF pathway. Our results suggest that UCP helps stabilize HIF-1α and may be a new molecular target for therapeutic intervention in human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UCP interacts with pVHL, but not the pVHL E3 ubiquitin ligase complex.
Figure 2: UCP targets pVHL for ubiquitin-mediated proteolysis, resulting in an accumulation of HIF-1α.
Figure 3: UCP stabilizes HIF-1α in the mouse liver and is coincidently detected with HIF-1α in human tumor cells.
Figure 4: UCP promotes tumor cell proliferation and invasion in culture.
Figure 5: UCP enhances tumor growth and metastasis in mice, which are inhibited by treatment with Ad.UCP-siRNA.
Figure 6: The effects of UCP on tumor-cell proliferation and invasion are mediated by the pVHL-HIF pathway.

Similar content being viewed by others

References

  1. Schwartz, A.L. & Ciechanover, A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74 (1999).

    Article  CAS  Google Scholar 

  2. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  3. Liu, Z., Diaz, L.A., Haas, A.L. & Giudice, G.J. cDNA cloning of a novel human ubiquitin carrier protein. An antigenic domain specifically recognized by endemic pemphigus foliaceus autoantibodies is encoded in a secondary reading frame of this human epidermal transcript. J. Biol. Chem. 267, 15829–15835 (1992).

    CAS  PubMed  Google Scholar 

  4. Liu, Z., Haas, A.L., Diaz, L.A., Conrad, C.A. & Giudice, G.J. Characterization of a novel keratinocyte ubiquitin carrier protein. J. Biol. Chem. 271, 2817–2822 (1996).

    Article  CAS  Google Scholar 

  5. Baboshina, O.V. & Haas, A.L. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J. Biol. Chem. 271, 2823–2831 (1996).

    Article  CAS  Google Scholar 

  6. Welsh, J.B. et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181 (2001).

    Article  CAS  Google Scholar 

  7. Wagner, K.W. et al. Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene 23, 6621–6629 (2004).

    Article  CAS  Google Scholar 

  8. Kaelin, W.G., Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  9. Cockman, M. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  Google Scholar 

  10. Iwai, K. et al. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA 96, 12436–12441 (1999).

    Article  CAS  Google Scholar 

  11. Ohh, M. et al. Ubiquitination of HIF requires direct binding to the von Hippel-Lindau protein β-domain. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  Google Scholar 

  12. Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  13. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  Google Scholar 

  14. Semenza, G.L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345–350 (2001).

    Article  CAS  Google Scholar 

  15. Pugh, C.W. & Ratcliffe, P.I. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677–684 (2003).

    Article  CAS  Google Scholar 

  16. Haase, V.H., Glickman, J.N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc. Natl. Acad. Sci. USA 98, 1583–1588 (2001).

    Article  CAS  Google Scholar 

  17. Los, M. et al. Expression pattern of the von Hippel-Lindau protein in human tissues. Lab. Invest. 75, 231–238 (1996).

    CAS  PubMed  Google Scholar 

  18. Schoenfeld, A.R., Davidowitz, E.J. & Burk, R.D. Elongin BC complex prevents degradation of von Hippel-Lindau tumor suppressor gene products. Proc. Natl. Acad. Sci. USA 97, 8507–8512 (2000).

    Article  CAS  Google Scholar 

  19. Feldman, D.E., Thulasiraman, V., Ferreyra, R.G. & Frydman, J. Formation of the VHL–Elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol. Cell 4, 1051–1061 (1999).

    Article  CAS  Google Scholar 

  20. Kamura, T., Brower, C.S., Conaway, R.C. & Conaway, J.W. A molecular basis for stabilization of the von Hippel-Lindau (VHL) tumor suppressor protein by components of the VHL ubiquitin ligase. J. Biol. Chem. 277, 30388–30393 (2002).

    Article  CAS  Google Scholar 

  21. Cho, W.K. et al. Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumors. Mol. Ther. 10, 938–949 (2004).

    Article  CAS  Google Scholar 

  22. Wu, P.Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).

    Article  CAS  Google Scholar 

  23. Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).

    Article  CAS  Google Scholar 

  24. De Sepulveda, P., Ilangumaran, S. & Rottapel, R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275, 14005–14008 (2000).

    Article  CAS  Google Scholar 

  25. Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H. & Weissman, A.M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  26. Saville, M.K. et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J. Biol. Chem. 279, 42169–42181 (2004).

    Article  CAS  Google Scholar 

  27. Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J. & Harper, J.W. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999).

    Article  CAS  Google Scholar 

  28. Hockel, M. & Vaupel, P. Tumor hypoxia: Definition and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266–276 (2001).

    Article  CAS  Google Scholar 

  29. Zhong, H. et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastasis. Cancer Res. 59, 5830–5835 (1999).

    CAS  Google Scholar 

  30. Zhong, H., Mabjeesh, N.J., Willard, M.T. & Simons, J.W. Nuclear expression of hypoxia-inducible factor 1α protein is heterogeneous in human malignant cells under normoxic conditions. Cancer Lett. 181, 233–238 (2002).

    Article  CAS  Google Scholar 

  31. Bilton, R.L. & Booker, G.W. The subtle side to hypoxia inducible factor (HIFα) regulation. Eur. J. Biochem. 270, 791–798 (2003).

    Article  CAS  Google Scholar 

  32. Lee, J.H. et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88, 1731–1737 (1996).

    Article  CAS  Google Scholar 

  33. Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W.G., Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1, 822–826 (1995).

    Article  CAS  Google Scholar 

  34. Kondo, K., Kim, W.Y., Lechpammar, M. & Kaelin, W.G., Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  Google Scholar 

  35. Kondo, K., Kico, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G., Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  Google Scholar 

  36. Maranchie, J. et al. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).

    Article  CAS  Google Scholar 

  37. Baba, M. et al. Tumor suppressor protein VHL is induced at high cell density and mediates contact inhibition of cell growth. Oncogene 20, 2727–2736 (2001).

    Article  CAS  Google Scholar 

  38. Mack, F.A. et al. Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell 3, 75–88 (2003).

    Article  CAS  Google Scholar 

  39. Koshiji, M. et al. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23, 1949–1956 (2004).

    Article  CAS  Google Scholar 

  40. Mack, F.A., Patel, J.H., Biju, M.P., Hasse, V.H. & Simon, M.C. Decreased growth of Vhl−/− fibrosarcomas is associated with elevated levels of cyclin kinase inhibitors p21 and p27. Mol. Cell. Biol. 25, 4565–4578 (2005).

    Article  CAS  Google Scholar 

  41. Ryan, H.E., Lo, J. & Johnson, R.S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998).

    Article  CAS  Google Scholar 

  42. Ryan, H.E. et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 60, 4010–4015 (2000).

    CAS  PubMed  Google Scholar 

  43. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  Google Scholar 

  44. Acker, T. et al. Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell 8, 131–141 (2005).

    Article  CAS  Google Scholar 

  45. Jung, C.R. et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology 43, 1042–1052 (2006).

    Article  CAS  Google Scholar 

  46. Rho, J., Choi, S., Seong, Y.R., Choi, J. & Im, D.S. The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1. J. Virol. 75, 8031–8044 (2001).

    Article  CAS  Google Scholar 

  47. Rho, J. et. al. PRMT5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem. 276, 11393–13401 (2001).

    Article  CAS  Google Scholar 

  48. Sakyo, T. & Kitagawa, T. Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains. Biochim. Biophys. Acta 1567, 165–175 (2002).

    Article  CAS  Google Scholar 

  49. Lee, D.H. et al. Macrophage inhibitory cytokine-1 induces the invasiveness of gastric cancer cells by up-regulating the urokinase-type plasminogen activator system. Cancer Res. 63, 4648–4655 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Center for Functional Analysis of Human Genome and 21C Frontier Human Gene Bank, Republic of Korea; Y.I. Yeom and N.S. Kim for providing full-length cDNAs; J.H. Lee for providing invasion and metastasis assays and C8161 cell line; D.G. Kim, I.P. Choi, and Y.S. Kim for providing tumor cell lines; C.K. Lee and D.Y. Yu for the use of animal facility. We also thank the reviewers for helpful remarks that improved this manuscript. This work was supported by a grant of 21C Frontier Functional Genome Project from the Ministry of Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Soo Im.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

F-UCP expressed in UCP-negative cells co-sediments with pVHL. (PDF 98 kb)

Supplementary Fig. 2

UCP targets pVHL in cells under hypoxic conditions, thereby accumulating active HIF-1α. (PDF 89 kb)

Supplementary Fig. 3

Recombinant GST-UCP, but not GST-UCPm is catalytically active. (PDF 90 kb)

Supplementary Fig. 4

UCP ubiquitinates pVHL in vitro (PDF 119 kb)

Supplementary Fig. 5

UCP specifically targets pVHL for degradation. (PDF 125 kb)

Supplementary Fig. 6

UCP targets pVHL for degradation in Ck-K1 cells, thereby stabilizing HIF-1α. (PDF 85 kb)

Supplementary Fig. 7

The specificity for UCP-siRNA. (PDF 114 kb)

Supplementary Fig. 8

Detection of Ad.F-UCP genome and F-UCP transcript in tumors excised from mice. (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, CR., Hwang, KS., Yoo, J. et al. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nat Med 12, 809–816 (2006). https://doi.org/10.1038/nm1440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing