Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Lipid microarrays identify key mediators of autoimmune brain inflammation

Abstract

Recent studies suggest that increased T-cell and autoantibody reactivity to lipids may be present in the autoimmune demyelinating disease multiple sclerosis. To perform large-scale multiplex analysis of antibody responses to lipids in multiple sclerosis, we developed microarrays composed of lipids present in the myelin sheath, including ganglioside, sulfatide, cerebroside, sphingomyelin and total brain lipid fractions. Lipid-array analysis showed lipid-specific antibodies against sulfatide, sphingomyelin and oxidized lipids in cerebrospinal fluid (CSF) derived from individuals with multiple sclerosis. Sulfatide-specific antibodies were also detected in SJL/J mice with acute experimental autoimmune encephalomyelitis (EAE). Immunization of mice with sulfatide plus myelin peptide resulted in a more severe disease course of EAE, and administration of sulfatide-specific antibody exacerbated EAE. Thus, autoimmune responses to sulfatide and other lipids are present in individuals with multiple sclerosis and in EAE, and may contribute to the pathogenesis of autoimmune demyelination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipid microarrays.
Figure 2: Individuals with multiple sclerosis have increased lipid-specific antibodies.
Figure 3: Mice with EAE have increased lipid-specific antibodies.
Figure 4: Immunization with sulfatide plus myelin peptide results in a more severe disease course of EAE.

Similar content being viewed by others

References

  1. Lehmann, P.V., Forsthuber, T., Miller, A. & Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  Google Scholar 

  2. Genain, C.P., Cannella, B., Hauser, S.L. & Raine, C.S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 5, 170–175 (1999).

    Article  CAS  Google Scholar 

  3. Morell, P. & Quarles, R.H. in Myelin Formation, Structure, and Biochemistry (Lippincott-Raven Publishers, Philadelphia, 1999).

    Google Scholar 

  4. Mazzanti, B. et al. T-cell response to myelin basic protein and lipid-bound myelin basic protein in patients with multiple sclerosis and healthy donors. J. Neuroimmunol. 82, 96–100 (1998).

    Article  CAS  Google Scholar 

  5. Ilyas, A.A., Chen, Z.W. & Cook, S.D. Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J. Neuroimmunol. 139, 76–80 (2003).

    Article  CAS  Google Scholar 

  6. Pender, M.P. et al. Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis. J. Clin. Neurosci. 10, 63–66 (2003).

    Article  CAS  Google Scholar 

  7. Uhlig, H. & Dernick, R. Monoclonal autoantibodies derived from multiple sclerosis patients and control persons and their reactivities with antigens of the central nervous system. Autoimmunity 5, 87–99 (1989).

    Article  CAS  Google Scholar 

  8. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  Google Scholar 

  9. Sadatipour, B.T., Greer, J.M. & Pender, M.P. Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis. Ann. Neurol. 44, 980–983 (1998).

    Article  CAS  Google Scholar 

  10. Fredman, P. The role of antiglycolipid antibodies in neurological disorders. Ann. NY Acad. Sci. 845, 341–352 (1998).

    Article  CAS  Google Scholar 

  11. Giovannoni, G., Morris, P.R. & Keir, G. Circulating antiganglioside antibodies are not associated with the development of progressive disease or cerebral atrophy in patients with multiple sclerosis. Ann. Neurol. 47, 684–685 (2000).

    Article  CAS  Google Scholar 

  12. Moody, D.B., Zajonc, D.M. & Wilson, I.A. Anatomy of CD1-lipid antigen complexes. Nat. Rev. Immunol. 5, 387–399 (2005).

    Article  CAS  Google Scholar 

  13. Battistini, L., Fischer, F.R., Raine, C.S. & Brosnan, C.F. CD1b is expressed in multiple sclerosis lesions. J. Neuroimmunol. 67, 145–151 (1996).

    CAS  PubMed  Google Scholar 

  14. Busshoff, U., Hein, A., Iglesias, A., Dorries, R. & Regnier-Vigouroux, A. CD1 expression is differentially regulated by microglia, macrophages and T cells in the central nervous system upon inflammation and demyelination. J. Neuroimmunol. 113, 220–230 (2001).

    Article  CAS  Google Scholar 

  15. Cipriani, B. et al. Upregulation of group 1 CD1 antigen presenting molecules in guinea pigs with experimental autoimmune encephalomyelitis: an immunohistochemical study. Brain Pathol. 13, 1–9 (2003).

    Article  Google Scholar 

  16. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  17. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  18. Alling, C., Vanier, M.T. & Svennerholm, L. Lipid alterations in apparently normal white matter in multiple sclerosis. Brain Res. 35, 325–336 (1971).

    Article  CAS  Google Scholar 

  19. Gerstl, B., Kahnke, M.J., Smith, J.K., Tavaststjerna, M.G. & Hayman, R.B. Brain lipids in multiple sclerosis and other diseases. Brain 84, 310–319 (1961).

    Article  CAS  Google Scholar 

  20. Cumings, J.N. Lipid chemistry of the brain in demyelinating diseases. Brain 78, 554–563 (1955).

    Article  CAS  Google Scholar 

  21. Svennerholm, L. Gangliosides and synaptic transmission. Adv. Exp. Med. Biol. 125, 533–544 (1980).

    Article  CAS  Google Scholar 

  22. Tettamanti, G. et al. Gangliosides, neuraminidase and sialyltransferase at the nerve endings. Adv. Exp. Med. Biol. 125, 263–281 (1980).

    Article  CAS  Google Scholar 

  23. Steinman, L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2, 762–764 (2001).

    Article  CAS  Google Scholar 

  24. Bjartmar, C., Wujek, J.R. & Trapp, B.D. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci. 206, 165–171 (2003).

    Article  CAS  Google Scholar 

  25. Robinson, W.H. et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol. 21, 1033–1039 (2003).

    Article  CAS  Google Scholar 

  26. Moore, G.R., Traugott, U., Farooq, M., Norton, W.T. & Raine, C.S. Experimental autoimmune encephalomyelitis. Augmentation of demyelination by different myelin lipids. Lab. Invest. 51, 416–424 (1984).

    CAS  PubMed  Google Scholar 

  27. Rosenbluth, J., Schiff, R., Liang, W.L. & Dou, W. Antibody-mediated CNS demyelination II. Focal spinal cord lesions induced by implantation of an IgM antisulfatide-secreting hybridoma. J. Neurocytol. 32, 265–276 (2003).

    Article  CAS  Google Scholar 

  28. Singh, A.K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).

    Article  CAS  Google Scholar 

  29. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  Google Scholar 

  30. Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Neuman de Vegvar, B.J. Lee, B. Kidd, B. Tomooka, S. Dunn, S. Youssef and other members of the Steinman and Robinson laboratories for discussions, and R. James and D. Oats from Camag Scientific for helping adapt the ATS4 to print lipid arrays. This work was supported by US National Institutes of Health (NIH) grant K08 AR02133, a NIH U19 Pilot Award, NIH National Heart, Lung, and Blood Institute (NHLBI) contract N01 HV 28183 and a Department of Veterans Affairs Merit Award to W.H.R.; and by NIH National Institute of Neurological Disorders and Stroke grant 5R01NS18235, NIH NHLBI contract N01 HV 28183, and NIH U19 DK61934 to L.S.; and J.L.K. received funding from NIH 5T32 GM07276, a Cellular and Molecular Biology training grant and a Stanford Graduate Gabilan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H Robinson.

Ethics declarations

Competing interests

William H. Robinson and Lawrence Steinman receive financial compensation for consulting for and own shares of stock in Bayhill Therapeutics.

Supplementary information

Supplementary Table 1

Antigens printed on lipid microarrays. (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanter, J., Narayana, S., Ho, P. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 12, 138–143 (2006). https://doi.org/10.1038/nm1344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing