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mosomal abnormalities in addition to
AML1 mutations2. One possibility is that
AML1 acts as a tumor suppressor.
Haploinsufficency of a tumor suppressor
could predispose patients to a variety of
secondary mutations2. Alternatively, sec-
ondary defects may be linked to the TGF-
β/BMP signaling cascade, which regulates
cell proliferation and cell-fate determina-
tion. The Smad proteins interact with all
three α-subunit gene products and have a
synergistic role in activating transcription
(ref. 14; Y-W. Zhang and Y. Ito, personal
communication).

The idea that heterozygous loss-of-
function can result in a tumor-prone phe-
notype alters our concept of what it
means for a protein to act as a tumor sup-
pressor15. p27Kip, an inhibitor of cyclin-de-
pendent kinases and suppressor of cell
proliferation, is a second candidate tumor
suppressor for which haploinsufficiency
has been causally associated with tumor
progression16. To evaluate the role of
tumor-suppressor haploinsufficiency in
the development of heritable leukemias,
it is important to determine whether or
not the unaffected allele is fully func-
tional. Secondary mutations, genetic and
epigenetic mechanisms could all inhibit
normal function of the wild-type gene
product. Confirmation of AML1 haploin-
sufficiency in tumor cells may indicate
new approaches to pharmacological in-
tervention. A detailed characterization of
the biochemistry of the normal and mu-
tant gene products will be necessary for
the development of therapeutic agents
that take advantage of any biochemical
differences between mutant and wild-

type AML1 and 
are capable of rescu-
ing the activity of
the wild-type gene.
Differences in AML1
heterodimerization
efficacy could be an
excellent example 
of this approach9–10.
However, develop-
ment of effective
leukemia therapeu-
tics will also require
the creation of bona
fide mouse models
of AML1 haploinsuf-
ficiency to study 
the genetic and
biochemical mecha-
nisms of tumor-
igenesis.
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Table 1 Point mutations in the Runt domain associated
with blood or bone disease

Mutation Disease Type DNA Hetero- Ref.
binding dimerization

Arg80→Cys AML Monoallelic - + 3
Lys83→Asn AML Monoallelic - + 3
Arg177→Gln AML Monoallelic - + 3
Arg139→Gln FPD Monoallelic NT NT 2
Arg174→Gln FPD Monoallelic NT NT 2
Met124→Arg CCD Monoallelic - NT 5
Ser140→Asna CCD Monoallelic - - 5
Phe146→Sera CCD Monoallelic - - 7
Lys167→Asnb CCD Monoallelic - NT
Arg174→Glnb CCD Monoallelic NT NT

AML, acute myelogenous leukemia; FPD, familial platelet disorder; CCD, cleidocranial
dysplasia; NT, not tested; -, loss-of-function; +, similar to wild-type. Numbering ac-
cording to AML1. DNA binding tested by electrophoretic mobility shift with recombi-
nant protein; heterodimerization tested by electrophoretic mobility shift and/or
affinity chromatography with recombinant protein. aSer140→Gly and Phe146→Asp
are deficient for both DNA binding and heterodimerization and were not isolated as
being disease-related; the Asn and Ser mutations at these positions, respectively, have
only been tested for DNA binding and are presumed to be heterodimerization-
deficient. bH. Kanegene, personal communication.

The ancestors of the Andean indigenous people are
believed to have originated in Asia and migrated to
South America about 20,000 years ago. This explains
their genetic similarities with the Japanese, including
their similarity in human T-cell lymphotrophic virus
type I (HTLV-1) haplotypes. To determine whether
the ancient Andeans (Paleo-mongoloids) migrated
with this  HTLV-1 haplotype, Cartier et al. (page 1428,
this issue) analyzed DNA isolated from bone marrow
of mummies excavated from the 
Atacama desert in north Chile. People buried in
cemeteries of this region were naturally mummi-
fied by the dry and salty conditions of the desert, and
thousands of mummified bodies have been discov-
ered. Two of 104 mummies tested actually had
ancient HTLV-1 DNA, and these viral DNA sequences
were almost identical to those of modern-day Chilean
and Japanese HTLV-1-seropositive individuals. The authors suggest that the HTLV-1 provirus
of these mummies might be the aboriginal HTLV-1 prevailing among Mongoloid popula-
tions in Asia and the Andes over 1,500 years ago. The picture shows one of the mummies
from this region, a woman estimated to be 1,300–1,700 years old, at the Instituto de Inves-
tigaciones Arqueologicas y Museo in San Pedro de Atacama, Chile.
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