Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells

Abstract

Fas Ligand (FasL) can induce apoptosis of Fas-bearing cells. It is expressed on the cell surface of many tumor cells, immune-privileged tissues and activated lymphocytes. We report here that FasL can itself transduce signals, leading to cell-cycle arrest and cell death in CD4+ T cells. In vitro, FasL engagement inhibited CD4+ T-cell proliferation, cell-cycle progression, and IL-2 secretion. In vivo, FasL engagement prevented superantigen-mediated CD4+, but not CD8+, T-cell expansion. These findings demonstrate that FasL engagement regulates cell-cycle progression, and show that FasL engagement in vivo has a potent anti-inflammatory effect specific for CD4+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FasL signaling inhibits CD4+ T-cell proliferation and blastogenesis.
Figure 2: FasL engagement results in early cell-cycle arrest followed by apoptosis.
Figure 3: FasL engagement inhibits the upregulation of activation molecules and cell-cycle regulatory proteins.
Figure 4: FasL engagement inhibits CD4+ T-cell proliferation by inhibiting IL-2 production.
Figure 5: FasL engagement inhibits the proliferation of wild-type, lpr and lprcg, but not gld, CD4+ T cells.
Figure 6: Soluble FasFc blocks endogenous FasL-mediated inhibition of proliferation in lprcg, but not lpr and gld, cells.
Figure 7: FasL engagement prevents CD4+ T cell expansion in response to superantigens in vivo.

Similar content being viewed by others

References

  1. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  Google Scholar 

  2. Suda, T. et al. Expression of the Fas ligand in cells of the T lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  Google Scholar 

  3. Hahne, M. et al. Activated B cells express functional Fas ligand. Eur. J. Immunol. 26, 721–724 (1996).

    Article  CAS  Google Scholar 

  4. Saas, P. et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain. J. Clin. Invest. 99, 1173–1178 (1997).

    Article  CAS  Google Scholar 

  5. Arase, H., Arase, N. & Saito, T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 181, 1235– 1238 (1995).

    Article  CAS  Google Scholar 

  6. Ju, S.T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 345–348 (1995).

    Article  Google Scholar 

  7. Dhein, J., Walczak, H., Baumler, C., Debatin, K.-M. & Krammer, P.H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–440 (1995).

    Article  CAS  Google Scholar 

  8. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 342–345 (1995).

    Article  Google Scholar 

  9. Renno, T., Hahne, M., Tschopp, J. & MacDonald, H.R. Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B220 and upregulate Fas and Fas ligand. J. Exp. Med. 183, 431–437 (1996).

    Article  CAS  Google Scholar 

  10. Kimura, M. & Matsuzawa, A. Autoimmunity in mice bearing lpr.cg: a novel mutant gene. Int. Rev. Immunol. 11, 193–210 (1994).

    Article  CAS  Google Scholar 

  11. Hahne, M. et al. Characterization of the non-functional Fas ligand of gld mice. Int. Immunol. 7, 1381– 1386 (1995).

    Article  CAS  Google Scholar 

  12. Chervonsky, A.V. et al. The role of Fas in autoimmune diabetes. Cell 89, 17–24 (1997).

    Article  CAS  Google Scholar 

  13. Kondo, T., Suda, T., Fukuyama, H., Adachi, M. & Nagata, S. Essential role of the Fas ligand in the development of hepatitis. Nature Med. 3, 409– 413 (1997).

    Article  CAS  Google Scholar 

  14. Giordano, C. et al. Potential Involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 275, 960–963 (1997).

    Article  CAS  Google Scholar 

  15. Itoh, N. et al. Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 186, 613–618 (1997).

    Article  CAS  Google Scholar 

  16. Hahne, M. et al. Melanoma cell expression of Fas(Apo-a/CD95) Ligand: Implications for tumor immune escape. Science 274, 1363–1366 (1996).

    Article  CAS  Google Scholar 

  17. O'Connell, J., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184, 1075– 1082 (1996).

    Article  CAS  Google Scholar 

  18. Niehans, G.A. et al. Human lung carcinomas express Fas ligand. Cancer Res. 57, 1007–1012 (1997).

    CAS  PubMed  Google Scholar 

  19. Tanaka, M. et al. Fas ligand in human serum. Nature Med. 2, 317–322 (1996).

    Article  CAS  Google Scholar 

  20. Seino, K., Kayagaki, N., Okumura, K. & Yagita, H. Anti-tumor effect of locally produced CD95L. Nature Med. 3, 165–170 (1997).

    Article  CAS  Google Scholar 

  21. Arai, H., Chan, S.Y., Bishop, D.K. & Nabel, G.J. Inhibition of the alloantibody response by CD95 ligand. Nature Med. 3, 843–848 (1997).

    Article  CAS  Google Scholar 

  22. Corry, D.B., Reiner, S.L., Linsley, P.S. & Locksley, R.M. Differential Effects of Blockade of CD28-B7 on the Development of Th1 or Th2 Effector Cells in Experimental Leishmaniasis. J. Immunol. 153, 4142–4148 (1994).

    CAS  Google Scholar 

  23. Kaneko, S., Suzuki, N., Koizumi, H., Yamamoto, S. & Sakane, T. Rescue by cytokines of apoptotic cell death induced by IL-2 deprivation of human antigen-specific T cell clones. Clin. Exp. Immunol. 109, 185–193 (1997).

    Article  CAS  Google Scholar 

  24. Dou, Q.P., An, B., Antoku, K. & Johnson, D.E. Fas stimulation induces RB dephosphorylation and proteolysis that is blocked by inhibitors of the ICE protease family. J. Cell. Biochem. 64, 586–594 (1997).

    Article  CAS  Google Scholar 

  25. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferative disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  Google Scholar 

  26. Chu, J.L. et al. Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome. J. Exp. Med. 181, 393– 398 (1995).

    Article  CAS  Google Scholar 

  27. Herman, A., Kappler, J., Marrack, P. & Pullen, A.M. Superantigens: Mechanisms of T-Cell Stimulation and Role in Immune Responses. Ann. Rev. Immunol. 9, 745–772 (1991).

    Article  CAS  Google Scholar 

  28. Jardetzky, T.S. et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718 (1994).

    Article  CAS  Google Scholar 

  29. Krummel, M.F. & Allison, J.P. CTLA-4 Engagement Inhibits IL-2 Accumulation and Cell-cycle Progression upon Activation of Resting T cells. J. Exp. Med. 183, 2533– 2540 (1996).

    Article  CAS  Google Scholar 

  30. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–463 (1995).

    Article  CAS  Google Scholar 

  31. Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 Ligation Blocks CD28-dependent T Cell Activation. J. Exp. Med. 183, 2541– 2550 (1996).

    Article  CAS  Google Scholar 

  32. Suzuki, I. & Fink, P.J. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas Ligand. J. Exp. Med. 187, 123–128 (1998).

    Article  CAS  Google Scholar 

  33. Hutchings, P. et al. The regulation of autoimmunity through CD4+ T cells. Autoimmunity 15, 21–23 (1993).

    Article  Google Scholar 

  34. Chandler, C. & Passaro, E., Jr. Transplant Rejection. Mechanisms and treatment. Arch. Surgery 128, 279– 283 (1993).

    Article  CAS  Google Scholar 

  35. Prud'homme, G.J. & Vanier, L.E. Cyclosporine, tolerance, and autoimmunity. Clin. Immunol. Immunopathol. 66, 185–192 (1993).

    Article  CAS  Google Scholar 

  36. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  Google Scholar 

  37. Allison, J., Georgiou, H.M., Strasser, A. & Vaux, D.L. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl. Acad. Sci. USA 94, 3943– 3947 (1997).

    Article  CAS  Google Scholar 

  38. Seino, K., Kayagaki, N., Fukao, K., Okumura, K. & Yagita, H. Rejection of Fas ligand-expressing grafts. Transplant. Proc. 29, 1092–1093 (1997).

    Article  CAS  Google Scholar 

  39. Kang, S.-M. et al. Fas ligand expression in islet of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738–743 (1997).

    Article  CAS  Google Scholar 

  40. Lau, H.T. & Stoeckert, C.J. FasL—Too much of a good thing? Nature Med. 3, 727– 728 (1997).

    Article  CAS  Google Scholar 

  41. Gillis, S. & Smith, K.A. Long term culture of tumor-specific cytotoxic T cells. Nature 268, 154– 156 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Budd and M. Coggeshall for their reviews of the manuscript,, J.E. Stone for technical assistance, C. Charland for flow cytometry, and R. Christie for secretarial assistance. Funding for these studies was provided by NIH ROI AI33470 (M.K.N), and USPHS-NIH AI40394 and AI40607 (R.C.D.). J.D. is supported by a Medical Research Council of Canada fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karen Newell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbarats, J., Duke, R. & Newell, M. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Nat Med 4, 1377–1382 (1998). https://doi.org/10.1038/3965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing